Science China Chemistry

, Volume 59, Issue 4, pp 387–393 | Cite as

Simple colorimetric detection of dopamine using modified silver nanoparticles

Articles

Abstract

Dopamine (DA) plays an important role in health and peripheral nervous systems. Colorimetric detection of DA has the advantage of color change and simplicity in operation and instrumentation. Herein, we report a highly sensitive and selective colorimetric detection of DA by using two specific ligands modified Ag nanoparticles, where the DA molecules can make dual recognition with high specificity. The colloidal suspension of modified Ag nanoparticles was agglomerated after interacting with DA, while the color of Ag nanoparticles suspension changed from yellow to brown, arising from the interparticle plasmon coupling during the aggregation of Ag nanoparticles. The modified Ag nanoparticles suspension and agglomeration were confirmed by transmission electron microscope images. The optical properties behind the color change were thoroughly investigated by using UV-Vis and Raman techniques. The changes in pH, zeta potential, particle size and surface charge density by adding DA were also determined by using dynamic light scattering measurements. The detection limits of modified Ag probes for DA was calculated to be 6.13×10-6 mol L-1 (S/N=2.04) and the correlation co-efficient was determined to be 0.9878. Because of the simplicity in operation and instrumentation of the colorimetric method, this work may afford a feasible, fast approach for detecting and monitoring the DA levels in physiological and pathological systems.

Keywords

dopamine detection Ag nanoprobe colorimetry dual molecular recognition sensitivity selectivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11426_2015_5500_MOESM1_ESM.doc (3 mb)
Supplementary material, approximately 1.04 MB.

References

  1. 1.
    Schultz W. Annu Rev Neurosci, 2007, 30: 259–288CrossRefGoogle Scholar
  2. 2.
    Perry M, Li Q, Kennedy RT. Anal Chim Acta, 2009, 653: 1–22CrossRefGoogle Scholar
  3. 3.
    Xie X, Gu J, Zhao WB, Liu SJ, Qiao YH, Zhu XY, Yin XH, Zhu ZW, Li MX, Shao YH. Sci China Chem, 2015, 58: 892–898CrossRefGoogle Scholar
  4. 4.
    Wu B, Miao C, Yu L, Wang Z, Huang C, Jia N. Sensor Actuat B-Chem, 2014, 195: 22–27CrossRefGoogle Scholar
  5. 5.
    Hormozi Nezhad MR, Tashkhourian J, Khodaveisi J. J Iran Chem Soc, 2010, 7: S83–S91CrossRefGoogle Scholar
  6. 6.
    Mu Q, Xu H, Li Y, Ma S, Zhong X. Analyst, 2014, 139: 93–98CrossRefGoogle Scholar
  7. 7.
    Li N, Guo JZ, Liu B, Cui H, Mao LQ, Lin YQ. Anal Chim Acta, 2009, 645: 48–55CrossRefGoogle Scholar
  8. 8.
    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Science, 1997, 277: 1078–1081CrossRefGoogle Scholar
  9. 9.
    Li HX, Rothberg L. Proc Natl Acad Sci, 2004, 101: 14036–14039CrossRefGoogle Scholar
  10. 10.
    Liu J, Lu Y. J Am Chem Soc, 2003, 125: 6642–6643CrossRefGoogle Scholar
  11. 11.
    Li D, Wieckowska A, Willner I. Angew Chem Int Ed, 2008, 47: 3927–3931CrossRefGoogle Scholar
  12. 12.
    Liu J, Lu Y. J Fluoresc, 2004, 14: 343–354CrossRefGoogle Scholar
  13. 13.
    Hormozi Nezhad MR, Alimohammadi M, Tashkhourian J, Mehdi Razavian S. Spectrochimica Acta A, 2008, 71: 199–203CrossRefGoogle Scholar
  14. 14.
    Baron R, Zayats M, Willner I. Anal Chem, 2005, 77: 1566–1571CrossRefGoogle Scholar
  15. 15.
    Palanisamy S, Zhang XH, He T. J Mater Chem B, 2015, 3: 6019–6025CrossRefGoogle Scholar
  16. 16.
    Kong B, Zhu A, Luo Y, Tian Y, Yu Y, Shi G. Angew Chem Int Ed, 2011, 50: 1837–1840CrossRefGoogle Scholar
  17. 17.
    Caro C, Castillo PM, Klippstein R, Pozo D, Zaderenko AP. Silver nanoparticles: sensing and imaging applications. In: Pozo Perez D, Eds. Silver Nanoparticles. Rijeka: InTech, 2010. 201–223Google Scholar
  18. 18.
    Paugam MF, Valencia LS, Boggess B, Smith BD. J Am Chem Soc, 1994, 116: 11203–12204CrossRefGoogle Scholar
  19. 19.
    Spath A, Konig B. Beilstein J Org Chem, 2010, 6: 1–111CrossRefGoogle Scholar
  20. 20.
    Robertson A, Shinkai S. Coord Chem Rev, 2000, 205: 157–199CrossRefGoogle Scholar
  21. 21.
    Ghosh SK, Pal T. Chem Rev, 2007, 107: 4797–4862CrossRefGoogle Scholar
  22. 22.
    He YQ, Liu SP, Kong L, Liu ZF. Spectrochimica Acta A, 2005, 61: 2861–2866CrossRefGoogle Scholar
  23. 23.
    Liu L, Li S, Liu L, Deng D, Xia N. Analyst, 2012, 137: 3794–3799CrossRefGoogle Scholar
  24. 24.
    Aslan K, Zhang J, Lakowicz JR, Geddes CD. J Fluoresc, 2004, 14: 391–400CrossRefGoogle Scholar
  25. 25.
    Wang X, Shi W, She G, Mu L. Phys Chem Chem Phys, 2012, 14: 5891–5901CrossRefGoogle Scholar
  26. 26.
    McGlashen ML, Davis KL, Morris MD. Surface enhanced Raman spectroscopy of neurotransmitters. In: AIP Conference Proceedings. 1989, 191: 707–712CrossRefGoogle Scholar
  27. 27.
    Berfield JL, Wang LC, Reith MEA. J Biol Chem, 1999, 274: 4876–4882CrossRefGoogle Scholar
  28. 28.
    Zohdi TI. Electromagnetic Properties of Multiphase Dielectrics: a Primer on Modeling, Theory and Computation. New York: Springer-Verlag Berlin and Heidelberg GmbH & Co. K, 2012CrossRefGoogle Scholar
  29. 29.
    Seetha Lekshmi N, Pedireddi VR. Inorg Chem, 2006, 45: 2400–2402CrossRefGoogle Scholar
  30. 30.
    Zaresh MM. J Appl Sci, 2008, 8: 3654–3661CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Key Laboratory of Nanosystem and Hierarchical FabricationChinese Academy of Sciences; National Center for Nanoscience and TechnologyBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations