Science China Chemistry

, Volume 59, Issue 4, pp 383–386 | Cite as

Removal of trace Cr(VI) from water using chitosan-iron nanowires in porous anodic alumina

  • Li Sun
  • Zhigang Yuan
  • Wenbang Gong
  • Zili Xu
  • Jijun Lu
  • Qinghua Zou
  • Yuqin Wu
  • Gongbing Su
  • Huafang Wang
Articles

Abstract

Chitosan-iron nanowires in porous anodic alumina (PAA) have been successfully prepared under ambient conditions as an adsorbent. The adsorbent was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and N2-BET surface area. The results showed that PAA can disperse and protect Fe0 nanorods from oxidation. The adsorption characteristics of trace Cr(VI) onto adsorbent have been examined at different initial Cr(VI) concentrations with pH 5. Batch adsorption studies show that the removal percentage of adsorbent for the removal of trace Cr(VI) is strongly dependent on the initial Cr(VI) concentrations. Langmuir and Freundlich isotherm models were used to analyze the experiment data. The adsorption of trace Cr(VI) by adsorbent is well modeled by the Langmuir isotherm and the maximum adsorption capacity of Cr(VI) is calculated as 123.95 mg/g which is very closed to the experiment results. Intraparticle diffusion study shows that the intraparticle diffusion of adsorbent is not the sole rate-controlling step. The negative value of Gibbs free energy change, ΔGo, indicated that the process of Cr(VI) onto adsorbent was spontaneous. This work has demonstrated that chitosan-iron nanowires in porous anodic alumina as an adsorbent has promising potential for heavy metal removal at trace level.

Keywords

chitosan-iron nanowires isotherms Cr(VI) thermodynamics adsorption kinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baikousi M, Bourlinos AB, Douvalis A, Bakas T, Anagnostopoulos DF, Tucek J, Safárová K, Zboril R, Karakassides MA. Langmuir, 2012, 28: 3918–3930CrossRefGoogle Scholar
  2. 2.
    Sun L, Zhang LD, Liang CH, Yuan ZG, Zhang Y, Xu W, Chen YZ. J Mater Chem, 2011, 21: 5877–5880CrossRefGoogle Scholar
  3. 3.
    Tang L, Yang GD, Zeng GM, Cai Y, Li SS, Zhou YY, Pang Y, Liu YY, Zhang Y, Luna B. Chem Eng J, 2014, 239: 114–122CrossRefGoogle Scholar
  4. 4.
    Lugo-Lugo V, Bernal-Martínez LA, Ureña-Núñez F, Linares-Hernández I, Almazán-Sánchez PT, Vázquez-Santillán PDJB. Fuel, 2014, 138: 204–213CrossRefGoogle Scholar
  5. 5.
    Wang ZK, Ye CL, Wang XY, Li J. Appl Surf Sci, 2013, 287: 232–241CrossRefGoogle Scholar
  6. 6.
    Liu SS, Chen YZ, Zhang LD, Hua GM, Xu W, Li N, Zhang Y. J Hazard Mater, 2011, 190: 723–728CrossRefGoogle Scholar
  7. 7.
    Sun L, Yuan ZG, Gong WB, Zhang LD, Xu ZL, Su GB, Han DG. Appl Surf Sci, 2015, 328: 606–613CrossRefGoogle Scholar
  8. 8.
    He F, Zhao DY. Environ Sci Technol, 2007, 41: 6216–6221CrossRefGoogle Scholar
  9. 9.
    Geng B, Jin ZH, Li TL, Qi XH. Sci Total Environ, 2009, 407: 4994–5000CrossRefGoogle Scholar
  10. 10.
    Wen YZ, Shen CS, Ni YY, Tong SP, Yu F. J Hazard Mater, 2012, 201–202: 162–169CrossRefGoogle Scholar
  11. 11.
    Tang L, Fang Y, Pang Y, Zeng GM, Wang JJ, Zhou YY, Deng YC, Yang GD, Cai Y, Chen J. Chem Eng J, 2014, 254: 302–312CrossRefGoogle Scholar
  12. 12.
    Ozer A, Akkaya G, Turabik M. J Hazard Mater, 2006, 135: 355–364CrossRefGoogle Scholar
  13. 13.
    Mall ID, Srivastava VC, Agarwal NK, Mishra IM. Chemosphere, 2005, 61: 492–501CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Li Sun
    • 1
  • Zhigang Yuan
    • 1
  • Wenbang Gong
    • 1
  • Zili Xu
    • 1
  • Jijun Lu
    • 1
  • Qinghua Zou
    • 1
  • Yuqin Wu
    • 1
  • Gongbing Su
    • 1
  • Huafang Wang
    • 1
  1. 1.School of Mechanical Engineering and AutomationWuhan Textile UniversityWuhanChina

Personalised recommendations