Science China Chemistry

, Volume 59, Issue 4, pp 442–451 | Cite as

On the oxidation states of metal elements in MO3- (M=V, Nb, Ta, Db, Pr, Gd, Pa) anions

Articles

Abstract

Relativistic quantum chemistry investigations are carried out to tackle the puzzling oxidation state problem in a series of MO3- trioxide anions of all d- and f-block elements with five valence electrons. We have shown here that while the oxidation states of V, Nb, Ta, Db, Pa are, as usual, all +V with divalent oxygen O(-II) in MO3- anions, the lanthanide elements Pr and Gd cannot adopt such high +V oxidation state in similar trioxide anions. Instead, lanthanide element Gd retains its usual +III oxidation state, while Pr retains a +IV oxidation state, thus forcing oxygen into a non-innocent ligand with an uncommon monovalent radical (O) of oxidation state -I. A unique Pr - (O)3 biradical with highly delocalized unpairing electron density on Pr(IV) and three O atoms is found to be responsible for stabilizing the monovalent-oxygen species in PrO3- ion, while GdO3- ion is in fact an OGd+(O22- ) complex with Gd(III). These results show that a naïve assignment of oxidation state of a chemical element without electronic structure analysis can lead to erroneous conclusions.

Keywords

oxidation state non-innocent ligand biradical lanthanide trioxide anion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Karen P, McArdle P, Takats J. Pure Appl Chem, 2014, 86: 1017–1081CrossRefGoogle Scholar
  2. 2.
    Malone LJ, Dolter T. Basic Concepts of Chemistry. Place Published: John Wiley & Sons, 2008Google Scholar
  3. 3.
    Solozhenko VL, Solozhenko EG, Lathe C. Solid State Commun, 2006, 137: 533–535CrossRefGoogle Scholar
  4. 4.
    Qiu YH, Hu HS, Chen G, Li J. Sci China Chem, 2014, 57: 426–434CrossRefGoogle Scholar
  5. 5.
    Riedel S, Kaupp M. Coord Chem Rev, 2009, 253: 606–625CrossRefGoogle Scholar
  6. 6.
    Gong Y, Zhou MF, Kaupp M, Riedel S. Angew Chem Int Ed, 2009, 48: 7879–7883CrossRefGoogle Scholar
  7. 7.
    Wang GJ, Zhou MF, Goettel JT, Schrobilgen JG, Su J, Li J, Schloeder T, Riedel S. Nature, 2014, 514: 475–477CrossRefGoogle Scholar
  8. 8.
    Xue ZL. Sci China Chem, 2015, 58: 4–5CrossRefGoogle Scholar
  9. 9.
    Pyykkö P, Xu WH. Angew Chem Int Ed, 2015, 54: 1080–1081CrossRefGoogle Scholar
  10. 10.
    Gong Y, Zhou MF, Andrews L. Chem Rev, 2009, 109: 6765–6808CrossRefGoogle Scholar
  11. 11.
    Adachi G, Imanaka N. Chem Rev, 1998, 98: 1479–1514CrossRefGoogle Scholar
  12. 12.
    Gibson JK, Marcalo J. Coord Chem Rev, 2006, 250: 776–783CrossRefGoogle Scholar
  13. 13.
    Kovacs A, Konings RJM, Gibson JK, Infante I, Gagliardi L. Chem–Rev, 2015, 115: 1725–1759Google Scholar
  14. 14.
    Li Y, Su J, Michell E, Zhang GQ, Li J. Sci China Chem, 2013, 56: 1671–1681CrossRefGoogle Scholar
  15. 15.
    Li J, Bursten BE, Liang B, Andrews L. Science, 2002, 295: 2242–2246CrossRefGoogle Scholar
  16. 16.
    Huang W, Xu WH, Su J, Schwarz WHE, Li J. Inorg Chem, 2013, 52: 14237–14245CrossRefGoogle Scholar
  17. 17.
    Nenajdenko VG, Shevchenko NE, Balenkova ES, Alabugin IV. Chem Rev, 2003, 103: 229–282CrossRefGoogle Scholar
  18. 18.
    Huber KP, Herzberg G. NIST Chemistry WebBook, NIST Standard–Reference Database Number 69. Secondary NIST Chemistry WebBook, NIST Standard Reference Database Number 69, 2009Google Scholar
  19. 19.
    Creighton JA, Lippincott ER. J Chem Phys, 1964, 40: 1779–1780CrossRefGoogle Scholar
  20. 20.
    Lopez N, Graham DJ, McGuire D, Alliger GE, Yang SH, Cummins CC, Nocera DG. Science, 2012, 335: 450–453CrossRefGoogle Scholar
  21. 21.
    Edwards AJ, Falconer WE, Griffiths JE, Sunder WA, Vasile MJ. J Chem Soc, Dalton Trans, 1974, 11: 1129–1133CrossRefGoogle Scholar
  22. 22.
    Cramer CJ, Tolman WB, Theopold KH, Rheingold AL. Proc Natl Acad Sci USA, 2003, 100: 3635–3640CrossRefGoogle Scholar
  23. 23.
    Pyykkö P, Runeberg N, Straka M, Dyall KG. Chem Phys Lett, 2000, 328: 415–419CrossRefGoogle Scholar
  24. 24.
    Xiao H, Hu HS, Schwarz WHE, Li J. J Phys Chem A, 2010, 114: 8837–8844CrossRefGoogle Scholar
  25. 25.
    Straka M, Dyall KG, Pyykkö P. Theor Chem Acc, 2001, 106: 393–403CrossRefGoogle Scholar
  26. 26.
    Huang W, Pyykkö P, Li J. Inorg Chem, 2015, 54: 8825–8831CrossRefGoogle Scholar
  27. 27.
    Zaitsevskii A, Schwarz WHE. Phys Chem Chem Phys, 2014, 16: 8997–9001CrossRefGoogle Scholar
  28. 28.
    Su J, Li WL, Lopez GV, Jian T, Cao GJ, Li WL, Schwarz WHE, Wang LS, Li J. J Phys Chem A, 2016, in pressGoogle Scholar
  29. 29.
    Takao K, Tsushima S, Ogura T, Tsubomura T, Ikeda Y. Inorg Chem, 2014 53: 5772–5780CrossRefGoogle Scholar
  30. 30.
    Maurice R, Renault E, Gong Y, Rutkowski PX, Gibson JK. Inorg–Chem, 2015, 54: 2367–2373Google Scholar
  31. 31.
    Mikulas T, Chen M, Dixon DA, Peterson KA, Gong Y, Andrews L. Inorg Chem, 2014, 53: 446–456CrossRefGoogle Scholar
  32. 32.
    Hu HS, Wei F, Wang XF, Andrews L, Li J. J Am Chem Soc, 2014, 136: 1427–1437CrossRefGoogle Scholar
  33. 33.
    Willson SP, Andrews L. J Phys Chem A, 1999, 103: 3171–3183CrossRefGoogle Scholar
  34. 34.
    MacDonald MR, Bates JE, Ziller JW, Furche F, Evans WJ. J Am Chem Soc, 2013, 135: 9857–9868CrossRefGoogle Scholar
  35. 35.
    Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868CrossRefGoogle Scholar
  36. 36.
    Velde GT, Bickelhaupt FM, Baerends EJ, Guerra CF, van Gisbergen SJA, Snijders JG, Ziegler T. J Comput Chem, 2001, 22: 931–967CrossRefGoogle Scholar
  37. 37.
    van Lenthe E, Baerends EJ, Snijders JG. J Chem Phys, 1993, 99: 4597–4610CrossRefGoogle Scholar
  38. 38.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09. Secondary Gaussian 09. Wallingford CT: Gaussian, Inc., 2009Google Scholar
  39. 39.
    Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, O’Neill DP, Palmieri P, Peng D, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M. MOLPRO. Version 2012.1. A package of ab initio programs, 2012, http://www.molpro.netGoogle Scholar
  40. 40.
    Ghigo G, Roos BO, Malmqvist PA. Chem Phys Lett, 2004, 396: 142–149CrossRefGoogle Scholar
  41. 41.
    Zhou MF, Andrews L. J Phys Chem A, 1998, 102: 8251–8260CrossRefGoogle Scholar
  42. 42.
    Vyboishchikov SF, Sauer J. J Phys Chem A, 2000, 104: 10913–10922CrossRefGoogle Scholar
  43. 43.
    Pradhan K, Gutsev GL, Weatherford CA, Jena P. J Chem Phys, 2011, 134: 144305CrossRefGoogle Scholar
  44. 44.
    Ramondo F, Bencivenni L, Sanna N, Cesaro SN. Theochem, 1992, 253: 121–147CrossRefGoogle Scholar
  45. 45.
    Waters T, Wedd AG, O’Hair RAJ. Chem Eur J, 2007, 13: 8818–8829CrossRefGoogle Scholar
  46. 46.
    Jackson P, Fisher KJ, Willett GD. Int J Mass Spectrom, 2000, 197: 95–103CrossRefGoogle Scholar
  47. 47.
    Sambrano JR, Gracia L, Andres J, Berski S, Beltran A. J Phys Chem A, 2004, 108: 10850–10860CrossRefGoogle Scholar
  48. 48.
    Wu ZJ, Kawazoe Y, Meng J. Theochem, 2006, 764: 123–132CrossRefGoogle Scholar
  49. 49.
    Ziegler T, Rauk A. Theor Chem Acc, 1977, 46: 1–10CrossRefGoogle Scholar
  50. 50.
    Li J, Bursten BE. J Am Chem Soc, 1998, 120: 11456–11466CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education; Department of ChemistryTsinghua UniversityBeijingChina
  2. 2.Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry; Shanghai Key Laboratory of Molecular Catalysts and Innovative MaterialsFudan UniversityShanghaiChina

Personalised recommendations