Science China Chemistry

, Volume 59, Issue 1, pp 150–158 | Cite as

Reductive immobilization of Re(VII) by graphene modified nanoscale zero-valent iron particles using a plasma technique

  • Jie Li
  • Changlun ChenEmail author
  • Rui Zhang
  • Xiangke WangEmail author


Technetium-99 (99Tc), largely produced by nuclear fission of 235U or 239Pu, is a component of radioactive waste. This study focused on a remediation strategy for the reduction of pertechnetate (TcO 4 - ) by studying its chemical analogue rhenium (Re(VII)) to avoid the complication of directly working with radioactive elements. Nanoscale zero-valent iron particles supported on graphene (NZVI/rGOs) from GOs-bound Fe ions were prepared by using a H2/Ar plasma technique and were applied in the reductive immobilization of perrhenate (ReO 4 - ). The experimental results demonstrated that NZVI/rGOs could efficiently remove Re from the aqueous solution, with enhanced reactivity, improved kinetics (50 min to reach equilibrium) and excellent removal capacity (85.77 mg/g). The results of X-ray photoelectron spectroscopy analysis showed that the mechanisms of Re immobilization by NZVI/rGOs included adsorption and reduction, which are significant to the prediction and estimation of the effectiveness of reductive TcO 4 - by NZVI/rGOs in the natural environment.


reductive immobilization Re(VII) NZVI/rGOs plasma technique 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fan DM, Anitori RP, Tebo BM, Tratnyek PG. Environ Sci Technol, 2013, 47: 5302–5310CrossRefGoogle Scholar
  2. 2.
    Fan DM, Anitori RP, Tebo BM, Tratnyek PG. Environ Sci Technol, 2014, 48: 7409–7417CrossRefGoogle Scholar
  3. 3.
    Benjamin PB, Ivana R, McGregor D, Mbomekalle IM, Lukens WW, Lynn CF. J Am Chem Soc, 2011, 133: 18802–18815CrossRefGoogle Scholar
  4. 4.
    Darab JG, Smith PA. Chem Mater, 1996, 8: 1004–1021CrossRefGoogle Scholar
  5. 5.
    Kim E, Boulegue J. Radiochim Acta, 2003, 91: 1–6CrossRefGoogle Scholar
  6. 6.
    Mashkani SG,Ghazvini PTM, Aligol DA. Bioresource Technol, 2009, 100: 603–608CrossRefGoogle Scholar
  7. 7.
    Xiong Y, Xu J, Shan WJ, Lou ZN, Fang DW, Zang SL, Han GX. Bioresource Technol, 2013, 127: 464–472CrossRefGoogle Scholar
  8. 8.
    Kim E, Benedetti MF, Boulegue J. Water Res, 2004, 38: 448–454CrossRefGoogle Scholar
  9. 9.
    Wan J, Klein J, Simon S, Joulian C, Dictor MC, Deluchat V, Dagot C. Water Res, 2010, 44: 5098–5108CrossRefGoogle Scholar
  10. 10.
    Kanel SR, Manning B, Charlet L, Choi H. Environ Sci Technol, 2005, 39: 1291–1298CrossRefGoogle Scholar
  11. 11.
    Wilkin RT, Su C, Ford RG, Paul CJ. Environ Sci Technol, 2005, 39: 4599–4605CrossRefGoogle Scholar
  12. 12.
    Liang LP, Guan XH, Shi Z, Li JL, Wu YN, Tratnyek PG. Environ Sci Technol, 2014, 48: 6326–6334CrossRefGoogle Scholar
  13. 13.
    Wang Y, Fang ZQ, Kang Y, Tsang EP. J Hazard Mater, 2014, 275: 230–237CrossRefGoogle Scholar
  14. 14.
    Liang LP, Yang WJ, Guan XH, Li JL, Xu ZJ, Wu J, Huang YY, Zhang XZ. Water Res, 2013, 47: 5846–5855CrossRefGoogle Scholar
  15. 15.
    Wang Y, Fang ZQ, Liang B, Tsang EP. Chem Eng J, 2014, 247: 283–290CrossRefGoogle Scholar
  16. 16.
    Joo SH, Feitz AJ, Sedlak DL, Waite TD. Environ Sci Technol, 2005, 39: 1263–1268CrossRefGoogle Scholar
  17. 17.
    Yang GC, Lee HL. Water Res, 2005, 39: 884–894CrossRefGoogle Scholar
  18. 18.
    Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV. Environ Sci Technol, 2006, 41: 284–290CrossRefGoogle Scholar
  19. 19.
    Chandra V, Park J, Chun YJ, Lee W, Hwang IC, Kim KS. ACS Nano, 2010, 4: 3979–3986CrossRefGoogle Scholar
  20. 20.
    Jabeen H, Chandra V, Jung SJ, Lee W, Kim KS, Kim SB. Nanoscale, 2011, 3: 3583–3585CrossRefGoogle Scholar
  21. 21.
    Wu QY, Lan JH, Wang CZ, Zhao YL, Chai ZF, Shi WQ. J Phys Chem A, 2014, 118: 10273–10280CrossRefGoogle Scholar
  22. 22.
    Wu QY, Lan JH, Wang CZ, Xiao CL, Zhao YL, Wei YZ, Chai ZF, Shi WQ. J Phys Chem A, 2014, 118: 2149–2158CrossRefGoogle Scholar
  23. 23.
    Li ZJ, Chen F, Yuan LY, Zhao YL, Chai ZF, Shi WQ. Chem Eng J, 2012, 210: 539–546CrossRefGoogle Scholar
  24. 24.
    Zhao GX, Jiang L, He YD, Li JX, Dong HL, Wang XK, Hu WP. Adv Mater, 2011, 23: 3959–3963CrossRefGoogle Scholar
  25. 25.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM. ACS Nano, 2010, 4: 4806–4814CrossRefGoogle Scholar
  26. 26.
    Hoch LB, Mack EJ, Hydutsky BW, Hershman JM, Skluzacek JM, Mallouk TE. Environ Sci Technol, 2008, 42: 2600–2605CrossRefGoogle Scholar
  27. 27.
    Singh G, Sutar DS, Botcha VD, Narayanam PK, Talwar SS, Srinivasa RS, Major SS. Nanotechnology, 2013, 24: 355704–355715CrossRefGoogle Scholar
  28. 28.
    Dou XM, Li R, Zhao B, Liang WY. J Hazard Mater, 2010, 182: 108–114CrossRefGoogle Scholar
  29. 29.
    Liger E, Charlet L, Van CP. Geochim Cosmochim Acta, 1999, 63: 2939–2955CrossRefGoogle Scholar
  30. 30.
    Ho YS. Water Res, 2006, 40: 119–125CrossRefGoogle Scholar
  31. 31.
    Bishop ME, Dong HL, Kukkadapu RK, Liu CX, Edelmann RE. Geochim Cosmochim Acta, 2011, 75: 5229–5246CrossRefGoogle Scholar
  32. 32.
    Peretyazhko TS, Zachara JM, Kukkadapu RK, Heald SM, Kutnyakov IV, Resch CT, Arey BW, Wang CM, Kovarik L, Phillips JL, Moore DA. Geochim Cosmochim Acta, 2012, 92: 48–66CrossRefGoogle Scholar
  33. 33.
    Lee JH, Zachara JM, Fredrickson JK, Heald SM, McKinley JP, Plymale AE, Resch CT, Moore DA. Geochim Cosmochim Acta, 2014, 136: 247–264CrossRefGoogle Scholar
  34. 34.
    Lv XS, Jiang GM, Xu XH. Chemosphere, 2011, 85: 1204–1209CrossRefGoogle Scholar
  35. 35.
    Peretyazhko T, Zachara JM, Heald SM, Jeon BH, Kukkadapu RK, Liu C, Moore D, Resch CT. Geochim Cosmochim Acta, 2008, 72: 1521–1539CrossRefGoogle Scholar
  36. 36.
    Yan S, Hua B, Bao ZY, Yang J, Liu CX, Deng BL. Environ Sci Technol, 2010, 44: 7783–7789CrossRefGoogle Scholar
  37. 37.
    Zhang L, Jiang XQ, Xu TC, Yang LJ, Zhang YY, Jin HJ. Ind Eng Chem Res, 2012, 51: 5577–5584CrossRefGoogle Scholar
  38. 38.
    Xiong Y, Chen CB, Gu XJ, Biswas BK, Shan WJ. Bioresource Technol, 2011, 102: 6857–6862CrossRefGoogle Scholar
  39. 39.
    Shan WJ, Fang DW, Zhao ZY, Yue S, Lou ZN, Xing ZQ, Xiong Y. Biomass Bioenerg, 2012, 37: 289–297CrossRefGoogle Scholar
  40. 40.
    Choe JK, Shapley JR, Strathmann TJ, Werth CJ. Environ Sci Technol, 2010, 44: 4716–4721CrossRefGoogle Scholar
  41. 41.
    Pacer RA. J Inorg Nucl Chem, 1973, 35: 1375–1377CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Plasma PhysicsChinese Academy of SciencesHefeiChina
  2. 2.University of Science and Technology of ChinaHefeiChina
  3. 3.Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
  4. 4.School for Radiological and Interdisciplinary Sciences (RAD-X)Soochow UniversitySuzhouChina
  5. 5.Faculty of EngineeringKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations