Science China Chemistry

, Volume 58, Issue 8, pp 1323–1328 | Cite as

A facile access for the C-N bond formation by transition metal-free oxidative coupling of benzylic C-H bonds and amides

Articles

Abstract

Using 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) as the oxidant, we communicate an efficient oxidative C-N coupling of benzylic C-H bonds with amides to afford a series of amination products in good yields. A wide range of functional groups as well as various sulfonamides and carboxamides are well tolerated. Moreover, this reaction involves both the challenging C-H functionalization and C-N bond formation.

Keywords

oxidative coupling C-N bond formation amination C-H functionalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11426_2015_5381_MOESM1_ESM.docx (17.7 mb)
Supplementary material, approximately 17.7 MB.

References

  1. 1.
    Correa A, Bolm C. Metal-catalyzed C(sp2)-N bond formation. In: Taillefer M, Ma D, Eds. Amination and Formation of sp 2 C-N. Vol. 46. Berlin Heidelberg: Springer, 2013. 55–85Google Scholar
  2. 2.
    Davies HML, Manning JR. Catalytic C-H functionalization by metal carbenoid and nitrenoid insertion. Nature, 2008, 451: 417–424CrossRefGoogle Scholar
  3. 3.
    Chiba S, Narasaka K. Simple Molecules, Highly Efficient Amination. Verlag GmbH & Co. KGaA: Wiley-VCH, 2008. 1–54Google Scholar
  4. 4.
    Dick AR, Sanford MS. Transition metal catalyzed oxidative functionalization of carbon-hydrogen bonds. Tetrahedron, 2006, 62: 2439–2463CrossRefGoogle Scholar
  5. 5.
    Davies HML. Recent advances in catalytic enantioselective intermolecular C-H functionalization. Angew Chem Int Ed, 2006, 45: 6422–6425CrossRefGoogle Scholar
  6. 6.
    Davies HML, Long MS. Recent advances in catalytic intramolecular C-H aminations. Angew Chem Int Ed, 2005, 44: 3518–3520CrossRefGoogle Scholar
  7. 7.
    Xie Y, Zhao Y, Qian B, Yang L, Xia C, Huang H. Enantioselective N-H functionalization of indoles with α,β-unsaturated γ-lactams catalyzed by chiral Brønsted acids. Angew Chem Int Ed, 2011, 50: 5682–5686CrossRefGoogle Scholar
  8. 8.
    Li ZP, Li CJ. A highly efficient cubr-catalyzed alkynylation of sp3 C-H bond. J Am Chem Soc, 2004, 126: 11810–11811CrossRefGoogle Scholar
  9. 9.
    Li CJ. Cross-dehydrogenative-coupling (CDC): explore C-C bond formations beyond functional group transformations. Acc Chem Res, 2009, 42: 335–344CrossRefGoogle Scholar
  10. 10.
    Collet F, Lescot C, Dauban P. Catalytic C-H amination: the stereoselectivity issue. Chem Soc Rev, 2011, 40: 1926–1936CrossRefGoogle Scholar
  11. 11.
    Collet F, Dodd RH, Dauban P. Catalytic C-H amination: recent progress and future directions. Chem Commun, 2009: 5061–5074Google Scholar
  12. 12.
    Breslow R, Gellman SH. Intramolecular nitrene carbon-hydrogen insertions mediated by transition-metal complexes as nitrogen analogs of cytochrome P-450 reactions. J Am Chem Soc, 1983, 105: 6728–6729CrossRefGoogle Scholar
  13. 13.
    Breslow R, Gellman SH. Tosylamidation of cyclohexane by a cytochrome P-450 model. J Chem Soc Chem Commun, 1982: 1400–1401Google Scholar
  14. 14.
    Kurokawa T, Kim M, Du Bois J. Synthesis of 1,3-diamines through rhodium-catalyzed C-H insertion. Angew Chem, Int Ed, 2009, 48: 2777–2779CrossRefGoogle Scholar
  15. 15.
    Fiori KW, Du Bois J. Catalytic intermolecular amination of C-H bonds: method development and mechanistic insights. J Am Chem Soc, 2007, 129: 562–568CrossRefGoogle Scholar
  16. 16.
    Espino CG, Wehn PM, Chow J, Du Bois J. Synthesis of 1,3-difunctionalized amine derivatives through selective C-H bond oxidation. J Am Chem Soc, 2001, 123: 6935–6936CrossRefGoogle Scholar
  17. 17.
    Nägeli I, Baud C, Bernardinelli G, Jacquier Y, Moraon M, Müllet P. Rhodium(II)-catalyzed CH insertions with {[(4-nitrophenyl)sulfonyl] imino}phenyl-λ3-iodane. Helv Chim Acta, 1997, 80: 1087–1105CrossRefGoogle Scholar
  18. 18.
    Leung SKY, Tsui WM, Huang JS, Che CM, Liang JL, Zhu N. Imido transfer from bis(imido)ruthenium(VI) porphyrins to hydrocarbons: effect of imido substituents, C-H bond dissociation energies, and RuVI/V reduction potentials. J Am Chem Soc, 2005, 127: 16629–16640CrossRefGoogle Scholar
  19. 19.
    Liang JL, Yuan SX, Huang JS, Yu WY, Che CM. Highly diastereo- and enantioselective intramolecular amidation of saturated C-H bonds catalyzed by ruthenium porphyrins. Angew Chem Int Ed, 2002, 41: 3465–3468CrossRefGoogle Scholar
  20. 20.
    Yu XQ, Huang JS, Zhou XG, Che CM. Amidation of saturated C-H bonds catalyzed by electron-deficient ruthenium and manganese porphyrins. A highly catalytic nitrogen atom transfer process. Org Lett, 2000, 2: 2233–2236Google Scholar
  21. 21.
    Wu Y, Wang J, Mao F, Kwong FY. Palladium-catalyzed cross-dehydrogenative functionalization of C(sp2)-H bonds. Chem-Asian J, 2014, 9: 26–47CrossRefGoogle Scholar
  22. 22.
    Banerjee D, Junge K, Beller M. Cooperative catalysis by palladium and a chiral phosphoric acid: enantioselective amination of racemic allylic alcohols. Angew Chem Int Ed, 2014, 53: 13049–13053CrossRefGoogle Scholar
  23. 23.
    Neumann JJ, Rakshit S, Dröge T, Glorius F. Palladium-catalyzed amidation of unactivated C(sp3)-H bonds: from anilines to indolines. Angew Chem Int Ed, 2009, 48: 6892–6895CrossRefGoogle Scholar
  24. 24.
    Thu HY, Yu WY, Che CM. Intermolecular amidation of unactivated sp2 and sp3 C-H bonds via palladium-catalyzed cascade C-H activation/nitrene insertion. J Am Chem Soc, 2006, 128: 9048–9049CrossRefGoogle Scholar
  25. 25.
    Hu J, Xie Y, Huang H. Palladium-catalyzed insertion of an allene into an aminal: aminomethylamination of allenes by C-N bond activation. Angew Chem Int Ed, 2014, 53: 7272–7276CrossRefGoogle Scholar
  26. 26.
    Priebbenow DL, Bolm C. C-H activation of methyl arenes in the MnO2-mediated aroylation of N-chlorosulfoximines. Org Lett, 2014, 16: 1650–1652CrossRefGoogle Scholar
  27. 27.
    Yi H, Liu Q, Liu J, Zeng Z, Yang Y, Lei A. DDQ-catalyzed oxidative C-O coupling of sp3 C-H bonds with carboxylic acids. Chem Sus Chem, 2012, 5: 2143–2146CrossRefGoogle Scholar
  28. 28.
    Kohmura Y, Katsuki T. Mn(salen)-catalyzed enantioselective C-H amination. Tetrahedron Lett, 2001, 42: 3339–3342CrossRefGoogle Scholar
  29. 29.
    Li Z, Capretto DA, Rahaman R, He C. Silver-catalyzed intermolecular amination of C-H groups. Angew Chem Int Ed, 2007, 46: 5184–5186CrossRefGoogle Scholar
  30. 30.
    Cui Y, He C. A silver-catalyzed intramolecular amidation of saturated C-H bonds. Angew Chem Int Ed, 2004, 43: 4210–4212CrossRefGoogle Scholar
  31. 31.
    Li Z, Capretto DA, Rahaman RO, He C. Gold(III)-catalyzed nitrene insertion into aromatic and benzylic C-H groups. J Am Chem Soc, 2007, 129: 12058–12059CrossRefGoogle Scholar
  32. 32.
    Wang L, Priebbenow DL, Dong W, Bolm C. N-arylations of sulfoximines with 2-arylpyridines by copper-mediated dual N-H/C-H activation. Org Lett, 2014, 16: 2661–2663CrossRefGoogle Scholar
  33. 33.
    Ni Z, Zhang Q, Xiong T, Zheng Y, Li Y, Zhang H, Zhang J, Liu Q. Highly regioselective copper-catalyzed benzylic C-H amination by N-fluorobenzenesulfonimide. Angew Chem Int Ed, 2012, 51: 1244–1247CrossRefGoogle Scholar
  34. 34.
    Liu X, Zhang Y, Wang L, Fu H, Jiang Y, Zhao Y. General and efficient copper-catalyzed amidation of saturated C-H bonds using N-halosuccinimides as the oxidants. J Org Chem, 2008, 73: 6207–6212CrossRefGoogle Scholar
  35. 35.
    He L, Yu J, Zhang J, Yu X-Q. α-Amidation of cyclic ethers catalyzed by simple copper salt and a mild and efficient preparation method for α, ϖ-amino alcohols. Org Lett, 2007, 9: 2277–2280CrossRefGoogle Scholar
  36. 36.
    Bhuyan R, Nicholas KM. Efficient copper-catalyzed benzylic amidation with anhydrous chloramine-T. Org Lett, 2007, 9: 3957–3959CrossRefGoogle Scholar
  37. 37.
    Pelletier G, Powell DA. Copper-catalyzed amidation of allylic and benzylic C-H bonds. Org Lett, 2006, 8: 6031–6034CrossRefGoogle Scholar
  38. 38.
    Fructos MR, Trofimenko S, Díaz-Requejo MM, Pérez PJ. Facile amine formation by intermolecular catalytic amidation of carbon-hydrogen bonds. J Am Chem Soc, 2006, 128: 11784–11791CrossRefGoogle Scholar
  39. 39.
    Li X, Liu X, Chen H, Wu W, Qi C, Jiang H. Copper-catalyzed aerobic oxidative transformation of ketone-derived N-tosyl hydrazones: an entry to alkynes. Angew Chem Int Ed, 2014, 53: 14485–14489CrossRefGoogle Scholar
  40. 40.
    Ye Y-H, Zhang J, Wang G, Chen SY, Yu XQ. Cobalt-catalyzed benzylic C-H amination via dehydrogenative-coupling reaction. Tetrahedron, 2011, 67: 4649–4654CrossRefGoogle Scholar
  41. 41.
    Harden JD, Ruppel JV, Gao GY, Zhang XP. Cobalt-catalyzed intermolecular C-H amination with bromamine-T as nitrene source. Chem Commun, 2007, 0: 4644–4646CrossRefGoogle Scholar
  42. 42.
    Ragaini F, Penoni A, Gallo E, Tollari S, Li Gotti C, Lapadula M, Mangioni E, Cenini S. Amination of benzylic C-H bonds by arylazides catalyzed by Co(II)-porphyrin complexes: a synthetic and mechanistic study. Chem Eur J, 2003, 9: 249–259CrossRefGoogle Scholar
  43. 43.
    Cheng Y, Dong W, Wang L, Parthasarathy K, Bolm C. Iron-catalyzed hetero-cross-dehydrogenative coupling reactions of sulfox-imines with diarylmethanes: a new route to N-alkylated sulfoximines. Org Lett, 2014, 16: 2000–2002CrossRefGoogle Scholar
  44. 44.
    Wang Z, Zhang Y, Fu H, Jiang Y, Zhao Y. Efficient intermolecular iron-catalyzed amidation of C-H bonds in the presence of N-bromosuccinimide. Org Lett, 2008, 10: 1863–1866CrossRefGoogle Scholar
  45. 45.
    Chan TL, Wu Y, Choy PY, Kwong FY. A radical process towards the development of transition-metal-free aromatic carbon-carbon bondforming reactions. Chem Eur J, 2013, 19: 15802–15814CrossRefGoogle Scholar
  46. 46.
    Truong T, Daugulis O. Base-mediated intermolecular sp2 C-H bond arylation via benzyne intermediates. J Am Chem Soc, 2011, 133: 4243–4245CrossRefGoogle Scholar
  47. 47.
    Sun CL, Li H, Yu DG, Yu M, Zhou X, Lu XY, Huang K, Zheng SF, Li BJ, Shi ZJ. An efficient organocatalytic method for constructing biaryls through aromatic C-H activation. Nat Chem, 2010, 2: 1044–1049CrossRefGoogle Scholar
  48. 48.
    Shirakawa E, Itoh K-I, Higashino T, Hayashi T. tert-Butoxide-mediated arylation of benzene with aryl halides in the presence of a catalytic 1,10-phenanthroline derivative. J Am Chem Soc, 2010, 132: 15537–15539CrossRefGoogle Scholar
  49. 49.
    Liu W, Cao H, Zhang H, Zhang H, Chung KH, He C, Wang H, Kwong FY, Lei A. Organocatalysis in cross-coupling: DMEDA-catalyzed direct C-H arylation of unactivated benzene. J Am Chem Soc, 2010, 132: 16737–16740CrossRefGoogle Scholar
  50. 50.
    Yanagisawa S, Ueda K, Taniguchi T, Itami K. Potassium t-butoxide alone can promote the biaryl coupling of electron-deficient nitrogen heterocycles and haloarenes. Org Lett, 2008, 10: 4673–4676CrossRefGoogle Scholar
  51. 51.
    Ochiai M, Miyamoto K, Kaneaki T, Hayashi S, Nakanishi W. Highly regioselective amination of unactivated alkanes by hypervalent sulfonylimino-λ3-bromane. Science, 2011, 332: 448–451CrossRefGoogle Scholar
  52. 52.
    Kim HJ, Kim J, Cho SH, Chang S. Intermolecular oxidative C-N bond formation under metal-free conditions: control of chemoselectivity between aryl sp2 and benzylic sp3 C-H bond imidation. J Am Chem Soc, 2011, 133: 16382–16385CrossRefGoogle Scholar
  53. 53.
    Fan R, Li W, Pu D, Zhang L. Transition-metal-free intermolecular amination of sp3 C-H bonds with sulfonamides. Org Lett, 2009, 11: 1425–1428CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.College of Chemistry and Molecular SciencesWuhan UniversityWuhanChina
  2. 2.National Research Centre for Carbohydrate SynthesisJiangxi Normal UniversityNanchangChina

Personalised recommendations