Science China Chemistry

, Volume 58, Issue 10, pp 1515–1523 | Cite as

Development of DNA computing and information processing based on DNA-strand displacement

  • Yafei Dong
  • Chen Dong
  • Fei Wan
  • Jing YangEmail author
  • Cheng ZhangEmail author


DNA computing, currently a hot research field in information processing, has the advantages of parallelism, low energy consumption, and high storability; therefore, it has been applied to a variety of complicated computational problems. The emerging field of DNA nanotechnology has also developed quickly; within it, the method of DNA strand displacement has drawn great attention because it is self-induced, sensitive, accurate, and operationally simple. This article summarizes five aspects of the recent developments of DNA-strand displacement in DNA computing: (1) cascading circuits; (2) catalyzed reaction; (3) logic computation; (4) DNA computing on surfaces; and (5) logic computing based on nanoparticles guided by strand displacement. The applications and mechanisms of strand displacement in DNA computing are discussed and possible future developments are presented.


DNA computing information processing strand displacement self-assembly nanomaterial 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhang DY, Seelig G. Dynamic DNA nanotechnology using strand displacement reactions. Nat Chem, 2011, 3: 103–113CrossRefGoogle Scholar
  2. 2.
    Green SJ, Lubrich D, Turberfield AJ. DNA hairpins: fuel for autonomous DNA devices. Biophys J, 2006, 91: 2966–2975CrossRefGoogle Scholar
  3. 3.
    Lechner RL, Enqler MJ, Richardson CC. Characterization of strand displacement synthesis catalyzed by bacteriophage T7 DNA polymerase. J Biol Chem, 1983, 258: 11174–11184Google Scholar
  4. 4.
    Lipton RJ. DNA solution of hard computational problems. Science, 1995, 268: 542–545CrossRefGoogle Scholar
  5. 5.
    Yan H, Zhang X, Shen Z. A robust DNA mechanical device controlled by hybridization topology. Nature, 2002, 415: 62–65CrossRefGoogle Scholar
  6. 6.
    Shi X, Lu W, Wang Z, Pan L, Cui G, Xu J, LaBean TH. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy. Nanotechnology, 2014, 25: 075602CrossRefGoogle Scholar
  7. 7.
    Liu H, Liu D. DNA nanomachines and their functional evolution. Chem Commun (Camb), 2009, 19: 2625–2636CrossRefGoogle Scholar
  8. 8.
    Lu Y, Liu J. Functional DNA nanotechnology emerging applications of DNAzymes and aptamers. Curr Opin Biotechnol, 2006, 17: 580–588CrossRefGoogle Scholar
  9. 9.
    Willner I, Shlyahovsky B, Zayats M, Willner B. DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem Soc Rev, 2008, 37: 1153–1165CrossRefGoogle Scholar
  10. 10.
    Liang L, Li J, Li Q, Huang Q, Shi J, Yan H, Fan C. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angew Chem, 2014, 53: 7745–7750CrossRefGoogle Scholar
  11. 11.
    Lan X, Chen Z, Dai G, Lu X, Ni W, Wang Q. Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality. J Am Chem Soc, 2013, 135: 11441–11444CrossRefGoogle Scholar
  12. 12.
    Zhang Q, Jiang Q, Li N, Dai L, Liu Q, Song L, Wang J, Li Y, Tian J, Ding B, Du Y. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS nano, 2014, 8: 6633–6643CrossRefGoogle Scholar
  13. 13.
    Zhang DY, Hariadi RF, Choi HM, Winfree E. Integrating DNA strand-displacement circuitry with DNA tile self-assembly. Nat Commun, 2013, 4: 1965Google Scholar
  14. 14.
    Seelig G, Soloveick D, Zhang DY, Winfree E. Enzyme-free nucleic acid logic circuits. Science, 2006, 314: 1585–1588CrossRefGoogle Scholar
  15. 15.
    Graugnard E, Kellis DL, Bui H, Barnes S, Kuang W, Lee J, Hughes WL, Knowlton WB, Yurke B. DNA-controlled excitonic switches. Nano Lett, 2012, 12: 2117–2122CrossRefGoogle Scholar
  16. 16.
    Zhang C, Wu L, Yang J, Liu S, Xu J. A molecular logical switch beacon controlled by thiolated DNA signals. Chem Commun, 2013, 49: 11308–11310CrossRefGoogle Scholar
  17. 17.
    Tian Y, Mao C. Molecular gears: a pair of DNA circles continuously rolls against each other. J Am Chem Soc, 2004, 126: 11410–11411CrossRefGoogle Scholar
  18. 18.
    Rinaudo K, Bleris L, Maddamsetti R, Subramanian S, Weiss R, Benenson Y. A universal RNAi-based logic evaluator that operates in mammalian cells. Nat Biotechnol, 2007, 25: 795–801CrossRefGoogle Scholar
  19. 19.
    Xie Z, Liu SJ, Bleris L, Benenson Y. Logic integration of mRNA signals by an RNAi-based molecular computer. Nucleic Acids Res, 2010, 38: 2692–2701CrossRefGoogle Scholar
  20. 20.
    Carlson R. The changing economics of DNA synthesis. Nat Biotechnol, 2009, 27: 1091–1094CrossRefGoogle Scholar
  21. 21.
    Xing Y, Yang Z, Liu D. A responsive hidden toehold to enable con trollable DNA strand displacement reactions. Anqew Chem Int Ed, 2011, 50: 11934–11936CrossRefGoogle Scholar
  22. 22.
    Srinivas N, Ouldridge TE, Sulc P, Schaeffer JM, Yurke B, Louis AA, Doye JP, Winfree E. On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Res, 2013, 41: 10641–10658CrossRefGoogle Scholar
  23. 23.
    Zhang DY, Winfree E. Control of DNA strand displacement kinetics using toehold exchange. J Am Chem Soc, 2009, 131: 17303–17314CrossRefGoogle Scholar
  24. 24.
    Soloveichik D, Seelig G, Winfree E. DNA as a universal substrate for chemical kinetics. Proc Natl Acad Sci USA, 2010, 107: 5393–5398CrossRefGoogle Scholar
  25. 25.
    Aldaye FA, Palmer AL, Sleiman HF. Assembling materials with DNA as the guide. Science, 2008, 321:1795–1799CrossRefGoogle Scholar
  26. 26.
    Seeman NC. Nanomaterials based on DNA. Annu Rev Biochem, 2010, 79: 65–87CrossRefGoogle Scholar
  27. 27.
    Seeman NC. Nucleic acid junctions and lattices. J Theor Biol, 1982, 99: 237–247CrossRefGoogle Scholar
  28. 28.
    Venkataraman S, Dirks RM, Rothemund PW, Winfree E, Pierce NA. An autonomous polymerization motor powered by DNA hybridization. Nat Nanotechnol, 2007, 2: 490–494CrossRefGoogle Scholar
  29. 29.
    Yin P, Choi HM, Calvert CR, Pierce NA. Programming biomolecular self-assembly pathways. Nature, 2008, 451: 318–322CrossRefGoogle Scholar
  30. 30.
    Lubrich D, Green SJ, Turberfield AJ. Kinetically controlled self-assembly of DNA oligomers. J Am Chem Soc, 2009, 131: 2422–2423CrossRefGoogle Scholar
  31. 31.
    Li B, Jiang Y, Chen X, Ellington AD. Probing spatial organization of DNA strands using enzyme-free hairpin assembly circuits. J Am Chem Soc, 2012, 134: 13918–13921CrossRefGoogle Scholar
  32. 32.
    Qian L, Winfree E. Scaling up digital circuit computation with DNA strand displacement cascades. Science, 2011, 332: 1196–1201CrossRefGoogle Scholar
  33. 33.
    Qian L, Winfree E, Bruck K. Neural network computation with DNA strand displacement cascades. Nature, 2011, 475: 368–372CrossRefGoogle Scholar
  34. 34.
    Turberfield AJ, Mitchell JC, Yurke B, Mills AP Jr, Blakey MI, Simmel FC. DNA fuel for free-running nanomachines. Phys Rev Lett, 2003, 90: 118102CrossRefGoogle Scholar
  35. 35.
    Seelig G, Yurke B, Winfree E. Catalyzed relaxation of a metastable DNA fuel. J Am Chem Soc, 2006, 128: 12211–12220CrossRefGoogle Scholar
  36. 36.
    Zhang DY, Turberfield AJ, Yurke B, Winfree E. Engineering entropy-driven reactions and networks catalyzed by DNA. Science, 2007, 318: 1121–1125CrossRefGoogle Scholar
  37. 37.
    Zhang DY, Winfree E. Dynamic allosteric control of noncovalent DNA catalysis reactions. J Am Chem Soc, 2008, 130: 13921–13926CrossRefGoogle Scholar
  38. 38.
    Zhu J, Zhang L, Dong S, Wang E. Four-way junction-driven DNA strand displacement and its application in building majority logic circuit. ACS Nano, 2013, 7: 10211–10217CrossRefGoogle Scholar
  39. 39.
    Lake A, Shang S, Kolpashchikov DW. Molecular logic gates connected through DNA four-way junctions. Anqew Chem Int Ed, 2010, 49: 4459–4462CrossRefGoogle Scholar
  40. 40.
    Ashkenasy G, Ghadiri MR. Boolean logic functions of a synthetic peptide network. J Am Chem Soc, 2004, 126: 11140–11141CrossRefGoogle Scholar
  41. 41.
    Phillips A, Cardelli L. A programming language for composable DNA circuits. J R Soc Interface, 2009, 6: 419–436CrossRefGoogle Scholar
  42. 42.
    Kim J, White KS, Winfree E. Construction of an in vitro bistable circuit from synthetic transcriptional switches. Mol Syst Biol, 2006, 2: 68–79CrossRefGoogle Scholar
  43. 43.
    Simpson ZB, Tsai TL, Nquyen N, Chen X, Ellington AD. Modelling amorphous computations with transcription networks. J R Soc Interface, 2009, 6: 523–533CrossRefGoogle Scholar
  44. 44.
    Zhu J, Zhang L, Li T, Dong S, Wang E. Enzyme-free unlabeled DNA logic circuits based on toehold-mediated strand displacement and split G-quadruplex enhanced fluorescence. Adv Mater, 2013, 25: 2440–2444CrossRefGoogle Scholar
  45. 45.
    Li W, Yang Y, Yan H, Liu Y. Three-input majority logic gate and multiple input logic circuit based on DNA strand displacement. Nano Lett, 2013, 13: 2980–2988CrossRefGoogle Scholar
  46. 46.
    Liu Q, Wang L, Frutos AG, Condon AE, Corn RM, Smith LM. DNA computing on surfaces. Nature, 2000, 403: 175–179CrossRefGoogle Scholar
  47. 47.
    Wu H. An improved surface-based method for DNA computation. Biosystems, 2001, 59: 1–5CrossRefGoogle Scholar
  48. 48.
    Frezza BM, Cockroft SL, Ghadiri MR. Modular multi-level circuits from immobilized DNA-based logic gates. J Am Chem Soc, 2007, 129: 14875–14879CrossRefGoogle Scholar
  49. 49.
    Picuri JM, Frezza BM, Ghadiri MR. Universal translators for nucleic acid diagnosis. J Am Chem Soc, 2009, 131: 9368–9377CrossRefGoogle Scholar
  50. 50.
    Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382: 607–609CrossRefGoogle Scholar
  51. 51.
    Zhang C, Ma J, Yang J, Dong Y, Xu J. Control of gold nanoparticles based on circular DNA strand displacement. J Colloid Interface Sci, 2014, 418: 31–36CrossRefGoogle Scholar
  52. 52.
    Yang J, Dong C, Dong Y, Liu S, Pan L, Zhang C. Logic nanoparticle beacon triggered by the binding-induced effect of multiple inputs. ACS Appl Mater Interfaces, 2014, 6: 14486–14492CrossRefGoogle Scholar
  53. 53.
    Maye MM, Kumara MT, Nykypanchuk D, Sherman WB, Gang O. Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nat Nanotechnol, 2009, 5: 116–120 Pu F, Liu Z, Ren J, Qu X. Nucleic acid-mesoporous silica nanoparticle conjugates for keypad lock security operation. Chem Commun (Camb), 2013, 49: 2305–2307CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.College of Life ScienceShannxi Normal UniversityXi’anChina
  2. 2.School of Control and Computer EngineeringNorth China Electric Power UniversityBeijingChina
  3. 3.Key Laboratory of High Confidence Software Technologies of Ministry of Education; Software Engineering Institute; School of Electronics Engineering and Computer SciencePeking UniversityBeijingChina

Personalised recommendations