Advertisement

Science China Chemistry

, Volume 58, Issue 3, pp 411–416 | Cite as

Fabrication of ZnO with tunable morphology through a facile treatment of Zn-based coordination polymers

  • Panpan Su
  • Jiao Zhao
  • Feng Rong
  • Can LiEmail author
  • Qihua YangEmail author
Articles Special Topic Chemistry from Chinese Female Chemists

Abstract

The morphology and structure of zinc oxide (ZnO), one of the important semiconductors, are relevant to its properties and applications. The preparation of ZnO with tunable morphology and desired structure is an attractive topic in the field of material synthesis. This work reports a facile method for the synthesis of ZnO with controllable morphology and crystal orientation using Zn-based coordination polymer particles (Zn-CPP) as precursors. Using hydrothermal method, Zn-CPP with morphologies of microrod, nanoplate, flower-like, arrow-tipped microsheet, and square cylinder were successfully synthesized via the coordination between metal ions Zn2+ and organic ligand 1,4,5,8-naphthalenetetracarboxylic dianhydride in aqueous solution. Subsequent thermal treatment of the Zn-CPP successfully resulted in the formation of porous ZnO with similar morphology to Zn-CPP. It is also found that the ZnO with enhanced (002) orientation could be obtained from Zn-CPP with preferred (002) orientation. This strategy could be extended for the preparation of other metal oxides with desired shape and structure.

Keywords

ZnO coordination polymers hydrothermal method micro and nanostructure specific morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11426_2014_5290_MOESM1_ESM.doc (89 kb)
Supplementary material, approximately 89.0 KB.

References

  1. 1.
    Krishnan B, Irimpan L, Nampoor VPN, Kumar V. Synthesis and nonlinear optical studies of nano ZnO colloids. Physica E, 2008, 40: 2787–2790CrossRefGoogle Scholar
  2. 2.
    Tokumoto MS, Pulcinelli SH, Santilli CV, Briois V. Catalysis and temperature dependence on the formation of ZnO nanoparticles and of zinc acetate derivatives prepared by the Sol-Gel route. J Phys Chem B, 2003, 107: 568–574CrossRefGoogle Scholar
  3. 3.
    Zi M, Zhu M, Chen L, Wei H, Yang X, Cao B. ZnO photoanodes with different morphologies grown by electrochemical deposition and their dye-sensitized solar cell oroperties. Ceram Int, 2014, 40: 7965–7970CrossRefGoogle Scholar
  4. 4.
    Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292: 1897–1899CrossRefGoogle Scholar
  5. 5.
    Goldberger J, Sirbuly DJ, Law M, Yang P. ZnO nanowire transistors. J Phys Chem B, 2005, 109: 9–14CrossRefGoogle Scholar
  6. 6.
    Kind H, Yan HQ, Messer B, Law M, Yang PD. Nanowire ultraviolet photodetectors and optical switches. Adv Mater, 2002, 14: 158–160CrossRefGoogle Scholar
  7. 7.
    Wan Q, Li QH, Chen YJ, Wang TH, He XL, Li JP, Lin CL. Fabrication and ethanol sensing characteristics of Zno nanowire gas sensors. Appl Phys Lett, 2004, 84: 3654–3656CrossRefGoogle Scholar
  8. 8.
    Wang ZL, Song JH. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312: 242–246CrossRefGoogle Scholar
  9. 9.
    Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V. Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells, 2003, 77: 65–82CrossRefGoogle Scholar
  10. 10.
    McLaren A, Valdes-Solis T, Li G, Tsang SC. Shape and size effects of ZnO nanocrystals on photocatalytic activity. J Am Chem Soc, 2009, 131: 12540–12541CrossRefGoogle Scholar
  11. 11.
    Xie X, Li Y, Liu ZQ, Haruta M, Shen W. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature, 2009, 458: 746–749CrossRefGoogle Scholar
  12. 12.
    Zhou X, Lan J, Liu G, Deng K, Yang Y, Nie G, Yu J, Zhi L. Facet-mediated photodegradation of organic dye over hematite architectures by visible light. Angew Chem Int Ed, 2012, 51: 178–182CrossRefGoogle Scholar
  13. 13.
    Lou XW, Wang Y, Yuan C, Lee JY, Archer LA. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater, 2006, 18: 2325–2329CrossRefGoogle Scholar
  14. 14.
    Andelman T, Gong YY, Polking M, Yin M, Kuskovsky I, Neumark G, O’Brien S. Morphological control and photoluminescence of zinc oxide nanocrystals. J Phys Chem B, 2005, 109: 14314–14318CrossRefGoogle Scholar
  15. 15.
    Lyu SC, Zhang Y, Lee CJ, Ruh H, Lee HJ. Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method. Chem Mater, 2003, 15: 3294–3299CrossRefGoogle Scholar
  16. 16.
    Li Y, Meng GW, Zhang LD, Phillipp F. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Appl Phys Lett, 2000, 76: 2011–2013CrossRefGoogle Scholar
  17. 17.
    Yin M, Gu Y, Kuskovsky IL, Andelman T, Zhu Y, Neumark GF, O’Brien S. Zinc oxide quantum rods. J Am Chem Soc, 2004, 126: 6206–6207CrossRefGoogle Scholar
  18. 18.
    Li JY, Chen XL, Li H, He M, Qiao ZY. Fabrication of zinc oxide nanorods. J Cryst Growth, 2001, 233: 5–7CrossRefGoogle Scholar
  19. 19.
    Guo L, Yang SH, Yang CL, Yu P, Wang JN, Ge WK, Wong GKL. Synthesis and characterization of poly(Vinylpyrrolidone)-modified zinc oxide nanoparticles. Chem Mater, 2000, 12: 2268–2274CrossRefGoogle Scholar
  20. 20.
    Meulenkamp EA. Synthesis and growth of ZnO nanoparticles. J Phys Chem B, 1998, 102: 5566–5572CrossRefGoogle Scholar
  21. 21.
    Cozzoli PD, Curri ML, Agostiano A, Leo G, Lomascolo M. ZnO Nanocrystals by a non-hydrolytic route: synthesis and characterization. J Phys Chem B, 2003, 107: 4756–4762CrossRefGoogle Scholar
  22. 22.
    Pan ZW, Dai ZR, Wang ZL. Nanobelts of semiconducting oxides. Science, 2001, 291: 1947–1949CrossRefGoogle Scholar
  23. 23.
    Chen Z, Shan ZW, Cao MS, Lu L, Mao SX. Zinc oxide nanotetrapods. Nanotechnology, 2004, 15: 365–369CrossRefGoogle Scholar
  24. 24.
    Yan HQ, He RR, Pham J, Yang PD. Morphogenesis of one-dimensional ZnO nano- and microcrystals. Adv Mater, 2003, 15: 402–405CrossRefGoogle Scholar
  25. 25.
    Jung S, Cho W, Lee HJ, Oh M. Self-template-directed formation of coordination-polymer hexagonal tubes and rings, and their calcination to ZnO rings. Angew Chem Int Ed, 2009, 48: 1459–1462CrossRefGoogle Scholar
  26. 26.
    Cho W, Park S, Oh M. Coordination polymer nanorods of Fe-MIL-88B and their utilization for selective preparation of hematite and magnetite nanorods. Chem Commun, 2011, 47: 4138–4140CrossRefGoogle Scholar
  27. 27.
    Zhao J, Li M, Sun J, Liu L, Su P, Yang Q, Li C. Metal-oxide nanoparticles with desired morphology inherited from coordination-polymer precursors. Chem-Eur J, 2012, 18: 3163–3168CrossRefGoogle Scholar
  28. 28.
    Cho W, Lee YH, Lee HJ, Oh M. Systematic transformation of coordination polymer particles to hollow and non-hollow In2O3 with pre-defined morphology. Chem Commun, 2009, 4756-4758Google Scholar
  29. 29.
    Cho W, Lee YH, Lee HJ, Oh M. Multi ball-in-ball hybrid metal oxides. Adv Mater, 2011, 23: 1720–1723CrossRefGoogle Scholar
  30. 30.
    Koner R, Goldberg I. Supramolecular reactivity of naphthalene-1,4,5, 8-tetracarboxylic acid towards transition metal ions: coordination polymers and discrete complexes with Cu-II, Ni-II and Co-II. Cryst Eng Comm, 2009, 11: 367–374CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Catalysis; Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations