Science China Chemistry

, Volume 58, Issue 1, pp 174–179 | Cite as

The study of the active surface for CO oxidation over supported Pd catalysts

  • Xuefei Weng
  • Xiang Yuan
  • Huan Li
  • Xiaokun Li
  • Mingshu Chen
  • Huilin Wan
Articles Special Issue In Honor of the 100th Birthday of Prof. Khi-Rui Tsai

Abstract

CO oxidation was investigated on various powder oxide supported Pd catalysts by temperature-programmed reaction. The pre-reduced catalysts show significantly higher activities than the pre-oxidized ones. Model studies were performed to better understand the oxidation state, reactivities and stabilities of partially oxidized Pd surfaces under CO oxidation reaction conditions using an in situ infrared reflection absorption spectrometer (IRAS). Three O/Pd(100) model surfaces, chemisorbed oxygen covered surface, surface oxide and bulk-like surface oxide, were prepared and characterized by low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES). The present work demonstrates that the oxidized palladium surface is less active for CO oxidation than the metallic surface, and is unstable under the reaction conditions with sufficient CO.

Keywords

CO oxidation in-situ IRAS temperature-programmed reaction palladium catalytically active surface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gao F, Wang Y, Cai Y, Goodman DW. CO Oxidation on Pt-group metals from ultrahigh vacuum to near atmospheric pressures. 2. Palladium and platinum. J Phys Chem C, 2009, 113: 174–181CrossRefGoogle Scholar
  2. 2.
    Gao F, McClure SM, Cai Y, Gath KK, Wang Y, Chen MS, Guo QL, Goodman DW. CO oxidation trends on Pt-group metals from ultrahigh vacuum to near atmospheric pressures: a combined in situ PM-IRAS and reaction kinetics study. Surf Sci, 2009, 603: 65–70CrossRefGoogle Scholar
  3. 3.
    Hendriksen BLM, Bobaru SC, Frenken JWM. Oscillatory CO oxidation on Pd(100) studied with in situ scanning tunneling microscopy. Surf Sci, 2004, 552: 229–242CrossRefGoogle Scholar
  4. 4.
    Hendriksen BLM, Ackermann MD, Rijn RV, Stoltz D, Popa I, Balmes O, Resta A, Wermeille D, Felici R, Ferrer S, Frenken JWM. The role of steps in surface catalysis and reaction oscillations. Nat Chem, 2010, 2: 730–734CrossRefGoogle Scholar
  5. 5.
    Zemlyanov D, Aszalos-Kiss B, Kleimenov E, Teschner D, Zafeiratos S, Hävecker M, Knop-Gericke A, Schlögl R, Gabasch H, Unterberger W, Hayek K, Klötzer B. In situ XPS study of Pd(111) oxidation. Part 1: 2D oxide formation in 10−3 mbar O2. Surf Sci, 2006, 600: 983–994CrossRefGoogle Scholar
  6. 6.
    Zorn K, Giorgio S, Halwax E, Henry CR, Grönbeck H, Rupprechter G. CO oxidation on technological Pd-Al2O3 catalysts: oxidation state and activity. J Phys Chem C, 2011, 115: 1103–1111CrossRefGoogle Scholar
  7. 7.
    Iglesias-Juez A, Kubacka A, Fernández-García M, Di Michiel M, Newton MA. Nanoparticulate Pd supported catalysts: size-dependent formation of Pd(I)/Pd(0) and their role in CO elimination. J Am Chem Soc, 2011, 133: 4484–4489CrossRefGoogle Scholar
  8. 8.
    Chen MS, Zheng YP, Wan HL. Kinetics and active surfaces for CO oxidation on Pt-group metals under oxygen rich conditions. Top Catal, 2013, 56: 1299–1313CrossRefGoogle Scholar
  9. 9.
    Chen MS, Cai Y, Yan Z, Gath KK, Axnanda S, Goodman DW. Highly active surface for CO oxidation on Rh, Pd, and Pt. Surf Sci, 2007, 601: 5326–5331CrossRefGoogle Scholar
  10. 10.
    Chen MS, Wang XV, Zhang LH, Tang ZY, Wan HL. Active surfaces for CO oxidation on palladium in the hyperactive state. Langmuir, 2010, 26: 18113–18118CrossRefGoogle Scholar
  11. 11.
    Wang ZW, Li B, Chen MS, Weng WZ, Wan HL. Size and support effects for CO oxidation on supported Pd catalysts. Sci China Chem, 2010, 53: 2047–2052CrossRefGoogle Scholar
  12. 12.
    Chen XN, Chen JY, Zhao Y, Chen MS, Wan HL. Effect of dispersion on catalytic performance of supported Pt catalysts for CO oxidation. Chinese J Catal, 2012, 33: 1901–1905CrossRefGoogle Scholar
  13. 13.
    Zheng G, Altman EI. The oxidation mechanism of Pd(100). Surf Sci, 2002, 504: 253–270CrossRefGoogle Scholar
  14. 14.
    Zheng G, Altman EI. The reactivity of surface oxygen phases on Pd(100) toward reduction by CO. J Phys Chem B, 2002, 106: 1048–1057CrossRefGoogle Scholar
  15. 15.
    Kostelník P, Seriani N, Kresse G, Mikkelsen A, Lundgren E, Blum V, Šikola T, Varga P, Schmid M, The \(Pd(100) - (\sqrt 5 \times \sqrt 5 )R27^\circ \) surface oxide: a LEED, DFT and STM study. Surf Sci, 2007, 601: 1574–1581CrossRefGoogle Scholar
  16. 16.
    Zheng G, Altman EI. The oxidation of Pd(111). Surf Sci, 2000, 462: 151–168CrossRefGoogle Scholar
  17. 17.
    Orent TW, Bader SD. LEED and ELS study of the initial oxidation of Pd(100). Surf Sci, 1982, 115: 323–334CrossRefGoogle Scholar
  18. 18.
    Szanyi J, Kuhn WK, Goodman DW. CO adsorption on Pd(111) and Pd(100): low and high pressure correlations. J Vacuum Sci Technol, 1993, 11: 1969–1974CrossRefGoogle Scholar
  19. 19.
    Sheppard N, Nguyen TT. Advances in Infrared and Raman Spectroscopy. Vol. 5, Charpter 2. Clark RJH, Hester RE, Eds. London: Heydon Publisher, 1978. 67Google Scholar
  20. 20.
    Gao F, Goodman DW. Reaction kinetics and polarization modulation infrared reflection absorption spectroscopy investigations of CO oxidation over planar Pt-group model catalysts. Langmuir, 2010, 26: 16540–16551CrossRefGoogle Scholar
  21. 21.
    Toyoshima R, Yoshida M, Monya Y, Suzuki K, Mun BS, Amemiya K, Mase K, Kondoh H. Active surface oxygen for catalytic CO oxidation on Pd(100) proceeding under near ambient pressure conditions. J Phys Chem Lett, 2012, 3: 3182–3187CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Xuefei Weng
    • 1
  • Xiang Yuan
    • 1
  • Huan Li
    • 1
  • Xiaokun Li
    • 1
  • Mingshu Chen
    • 1
  • Huilin Wan
    • 1
  1. 1.State Key Laboratory of Physical Chemistry of Solid Surfaces; National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters; Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina

Personalised recommendations