Advertisement

Science China Chemistry

, Volume 58, Issue 3, pp 448–456 | Cite as

A series of novel Zn(II) and Mn(II) metal-organic frameworks constructed by 2,4-bis-oxyacetate-benzoic acid: syntheses, structures and photoluminescence

  • Yan Lv
  • Pei Shi
  • Wei Shen
  • Xiaoju Chen
  • Guoliang Zhao
Articles

Abstract

A new carboxylic acid ligand, 2,4-bis-oxyacetate-benzoic acid (H3BOABA), was designed and introduced to construct novel metal-organic framework materials. [ZnNa(BOABA)(phen)(H2O)]·H2O (1), ZnNa(BOABA) (2), Mn3(BOABA)2(phen)2 (3), [Mn2(BOABA)(OH)]·(H2O)2 (4) (CCDC: 885138, 885137, 894225, 883094) were hydrothermally synthesized and characterized by elemental analysis, IR spectra and thermal gravimetric analyses. Crystal structures of the complexes were determined by single crystal X-ray diffraction method. Complex 1 is a one dimensional double edges non-interpenetrated framework decorated by the phen ligands on the surface. Complex 2 is an unique three dimensional open framework, consisting of Zn(II) and Na(I). Complex 3 is an unique double edges one dimensional MOF containing a [Mn3(BOABA)2(phen)2] n non-interpenetrated structure. Complex 4 is a two dimensional plane structure containing two Mn atoms in the same coordination environment. The interaction between four complexes and DNA were studied by EtBr fluorescence probe. Meanwhile, photoluminescence studies revealed that these four complexes display strong fluorescent emission bands in the solid state at room temperature.

Keywords

Zn and Mn complexes 2,4-bis-oxyacetate-benzoic acid crystal structure DNA binding photoluminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11426_2014_5161_MOESM1_ESM.pdf (507 kb)
Supplementary material, approximately 507 KB.

References

  1. 1.
    Zhang J, Bu XH. Temperature dependent charge distribution in three-dimensional homochiral cadmium camphorates. Chem Commun, 2008, 4: 444–446CrossRefGoogle Scholar
  2. 2.
    He JH, Chen HY, Xiao DR, Sun DZ, Zhang GJ, Yan SW, Xin GH, Yuan R, Wang EB. An unprecedented 3-fold interpenetrated double-edged pseudo-diamondoid network containing exceptional 5-fold interlocking tri-flexure helices and 15-fold interwoven helices. Cryst Eng Comm, 2011, 13: 4841–4845CrossRefGoogle Scholar
  3. 3.
    Yaghi OM, Ockwig MONW, Chae HK, Reticular MEJK. Reticular synthesis and the design of new materials. Nature, 2003, 423: 705–714CrossRefGoogle Scholar
  4. 4.
    Rao CNR, Natarajan S, Vaidhyanathan R. Metal carboxylates with open architectures. Angew Chem Int Ed, 2004, 43: 1466–1496CrossRefGoogle Scholar
  5. 5.
    Rosi NL, Kim J, Eddaoudi M, Chen BL, O’Keeffe M, Yaghi OM. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J Am Chem Soc, 2005, 127: 1504–1518CrossRefGoogle Scholar
  6. 6.
    Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O’Keeffe M, Yaghi OM. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc Chem Res, 2001, 34: 319–330CrossRefGoogle Scholar
  7. 7.
    Kitagawa S, Kitaura R, Noro SI. Functional porous coordination polymers. Angew Chem Int Ed, 2004, 43: 2334–2375CrossRefGoogle Scholar
  8. 8.
    Murray LJ, Dinca M, Long JR. Hydrogen storage in metal-organic frameworks. Chem Soc Rev, 2009, 38: 1294–1314CrossRefGoogle Scholar
  9. 9.
    Zhou HC, Long JR, Yaghi OM. Introduction to metal-organic frameworks. Chem Rev, 2012, 112: 673–674CrossRefGoogle Scholar
  10. 10.
    Chen S, Zhang J, Wu T, Feng P, Bu X. Multi-route synthesis of porous anionic frameworks and size-tunable extra-framework organic-cation-controlled gas sorption propertie. J Am Chem Soc, 2009, 131: 16027–16029CrossRefGoogle Scholar
  11. 11.
    Cui YJ, Yue YF, Qian GD, Chen BL. Luminescent functional metal-organic frameworks. Chem Rev, 2012, 112: 1126–1162CrossRefGoogle Scholar
  12. 12.
    Lan AJ, Li KH, Wu HH, Olson DH, Emge TJ, Ki W, Hong MC, Li J. A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives. Angew Chem Int Ed, 2009, 48: 2334–2338CrossRefGoogle Scholar
  13. 13.
    Vodak DT, Braun ME, Kim J, Eddaoudi M, Yaghi OM. Metal-organic frameworks constructed from pentagonal antiprismatic and cuboctahedral secondary building units. Chem Commun, 2001, 24: 2534–2535CrossRefGoogle Scholar
  14. 14.
    Li XJ, Cao R, Sun DF, Bi WH, Wang YQ, Li X, Hong MC. Syntheses and characterizations of zinc(II) compounds containing three-dimensional interpenetrating diamondoid networks constructed by mixed ligands. Cryst Growth Des, 2004, 4: 775–780CrossRefGoogle Scholar
  15. 15.
    Xiao DR, Wang EB, An HY, Su ZM, Li YG, Gao L, Sun CY, Xu L. Rationally designed, polymeric, extended metal-ciprofloxacin complexes. Chem Eur J, 2005, 11: 6673–6686CrossRefGoogle Scholar
  16. 16.
    Tranchemontagne DJ, Mendoza-Cortes JL, O’Keeffe M, Yaghi OM. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem Soc Rev, 2009, 38: 1257–1283CrossRefGoogle Scholar
  17. 17.
    Ma CB, Chen CN, Liu QT, Liao DZ, Li LC. Synthesis and characterization of a ladder-like coordination polymer composed of trimanganese clusters formed and linked by isophthalato ligands. Eur J Inorg Chem, 2008, 11: 1865–1870CrossRefGoogle Scholar
  18. 18.
    Glowlak T, Durcanská E, Ondrejkovicová I, Ondrejovic G. Structure of methyltriphenylphosphonium tetrachloroferrate(III). Acta Cryst, 1986, 42: 1331–1333Google Scholar
  19. 19.
    Hu NH. A Hydroxide inclusion complex of a methylene-bridged tetrapyrimidinium macrocycle. Acta Cryst, 1994, 50: 2082–2085Google Scholar
  20. 20.
    Tian D, Liu SJ, Zhang DS, Chang Z, Hu TL, Bu XH. Syntheses, structures and magnetic properties of three Co(II) coordination architectures based on a flexible multidentate carboxylate ligand and different N-donor ligands. Sci Chin Chem, 2013, 56: 1693–1700CrossRefGoogle Scholar
  21. 21.
    Li M, Xiang JF, Yuan LJ, Wu SM, Chen SP, Sun JT. Syntheses, structures, and photoluminescence of three novel coordination polymers constructed from dimeric d10 metal units. Cryst Growth Des, 2006, 6: 2036–2040CrossRefGoogle Scholar
  22. 22.
    Zheng SL, Yang JH, Yu XL, Chen XM, Wong WT. Syntheses, structures, photoluminescence, and theoretical studies of d10 metal complexes of 2,2′-dihydroxy-[1,1′]binaphthalenyl-3,3′-dicarboxylate. Inorg Chem, 2004, 43: 830–838CrossRefGoogle Scholar
  23. 23.
    Wang XL, Qin C, Wang EB, Li YG, Hao N, Hu CW, Xu L. Syntheses, structures, and photoluminescence of a novel class of d10 metal complexes constructed from pyridine-3,4-dicarboxylic acid with different coordination architectures. Inorg Chem, 2004, 43: 1850–1856CrossRefGoogle Scholar
  24. 24.
    Hong MC, Zhao YJ, Su WP, Cao R, Fujita M, Zhou ZY, Chan ASC. A silver(I) Coordination polymer chain containing nanosized tubes with anionic and solvent molecule guests. Angew Chem Int Ed, 2000, 39: 2468–2470CrossRefGoogle Scholar
  25. 25.
    Wen YH, Zhang J, Wang XQ, Feng YL, Cheng JK, Li ZJ, Yao YG. A rare metal-organic 3D architecture with a pseudo-primitive cubic topology with double edges constructed from a 12-connected SBU. New J Chem, 2005, 29: 995–997CrossRefGoogle Scholar
  26. 26.
    Yang SY, Long LS, Jiang YB, Huang RB, Zheng LS. An exceptionally stable metal-organic framework constructed from the Zn8(SiO4) core. Chem Mater, 2002, 14: 3229–3231CrossRefGoogle Scholar
  27. 27.
    Luo F, Che YX, Zheng JM. The first self-penetrating topology based on an unusual α-Po net with double edges constructed from a 12-connected Gd22-ocarboxylate)22-OH2)23-OH)2Cu2 core. Cryst Growth Des, 2006, 6: 2432–2434CrossRefGoogle Scholar
  28. 28.
    Carlucci L, Ciani G, Maggini S, Proserpio DM, Visconti M. Heterometallic modular metal-organic 3D frameworks assembled via new tris-β-diketonate metalloligands: nanoporous materials for anion exchange and scaffolding of selected anionic guests. Chem Eur J, 2010, 16: 12328–12341CrossRefGoogle Scholar
  29. 29.
    SAINT. Version 6.2. Madison, WI: Bruker AXS Inc., 2001Google Scholar
  30. 30.
    Sheldrick GM. SADABS. Göttingen: University of Göttingen, 1997Google Scholar
  31. 31.
    Sheldrick GM. SHELXTL. Version 6.10. Madison, WI: Bruker Analytical X-ray Systems, 2001Google Scholar
  32. 32.
    Jiang XR, Yuan HY, Feng YL. Five new Zn(II) and Cd(II) coordination polymers constructed by 3,5-bis-oxyacetate-benzoic acid: syntheses, crystalstructures, network topologies and luminescent properties. J Solid State Chem, 2012, 191: 181–190CrossRefGoogle Scholar
  33. 33.
    Wang Y, Zhao FH, Che YX, Zheng JM. A 3D photoluminescent Cd(II) polymer based on mixed 3,5-bis-oxyacetate-benzoic acid and rigid bis(imidazole) ligands with an unusual (4,8)-connected topology. Inorg Chem Commun, 2012, 17: 180–183CrossRefGoogle Scholar
  34. 34.
    Zhang J, Liu R, Feng PY, Bu XH. Organic cation and chiral anion templated 3D homochiral open-framework materials with unusual square-planar {M4(OH)} units. Angew Chem Int Ed, 2007, 46: 8388–8391CrossRefGoogle Scholar
  35. 35.
    Zhang J, Chen SM, Valle H, Wong M, Austria C, Cruz M, Bu XH. Manganese and magnesium homochiral materials: decoration of honeycomb channels with homochiral chains. J Am Chem Soc, 2007, 129: 14168–14169CrossRefGoogle Scholar
  36. 36.
    James B, Nigel GRH, Kathryn EP, Richardson JF, Salamon SB. Mn(II) and Cu(II) complexes of a dithiadiazolyl radical ligand: monimer/dimer equilibria in solution. Inorg Chem, 2007, 46: 3934–3945CrossRefGoogle Scholar
  37. 37.
    Wang XL, Qin C, Wang EB, Li YG, Su ZM, Xu L, Carlucci L. Entangled coordination networks with inherent features of polycatenation, polythreading, and polyknotting. Angew Chem Int Ed, 2005, 44: 5824–5827CrossRefGoogle Scholar
  38. 38.
    Lakowicz JR, Weber G. Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry, 1973, 12: 4161–4170CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yan Lv
    • 1
  • Pei Shi
    • 1
  • Wei Shen
    • 1
  • Xiaoju Chen
    • 1
  • Guoliang Zhao
    • 1
    • 2
  1. 1.College of Chemistry and Life ScienceZhejiang Normal UniversityJinhuaChina
  2. 2.Xingzhi CollegeZhejiang Normal UniversityJinhuaChina

Personalised recommendations