Advertisement

Science China Chemistry

, Volume 57, Issue 6, pp 873–880 | Cite as

Co3O4 nanosheets: synthesis and catalytic application for CO oxidation at room temperature

  • YongGe Lv
  • Yong Li
  • Na Ta
  • WenJie Shen
Articles

Abstract

Hexagonal β-Co(OH)2 nanosheets with edge length of 50 nm and thickness of 10 nm were hydrothermally synthesized with the aid of triethylamine. Upon calcination at 350 °C in air, the β-Co(OH)2 nanosheets was converted into Co3O4 nanosheets with a similar dimension. Structural analyses during the calcination process identified that the β-Co(OH)2 precursor was initially dehydrated to HCoO2 and subsequently transferred into Co3O4. When being applied to catalyze CO oxidation at room temperature, the Co3O4 nanosheets exhibited a higher activity than the conventional spherical nanoparticles. This was perhaps related to the partial exposure of the {11\(\bar 2\)} planes over the Co3O4 nanosheets. The porous structure generated during the calcination process also provided significant amounts of surface defects, which might contribute to the enhanced catalytic activity as well.

Keywords

Co3O4 nanosheets CO oxidation morphology-dependence nanocatalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Li Y, Shen WJ. Morphology-dependent nanocatalysis on metal oxides. Sci China Chem, 2012, 55: 2485–2496CrossRefGoogle Scholar
  2. 2.
    Zhou KB, Li YD. Catalysis based on nanocrystals with well-defined facets. Angew Chem Int Ed, 2012, 51: 602–613CrossRefGoogle Scholar
  3. 3.
    Royer S, Duprez D. Catalytic oxidation of carbon monoxide over transition metal oxides. ChemCatChem, 2011, 3: 24–65CrossRefGoogle Scholar
  4. 4.
    Wang X, Tian W, Zhai TY, Zhi CY, Bando Y, Golberg D. Cobalt(II,III) oxide hollow structures: fabrication, properties and applications. J Mater Chem, 2012, 22: 23310–23326CrossRefGoogle Scholar
  5. 5.
    Zhou KB, Wang X, Sun XM, Peng Q, Li YD. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J Catal, 2005, 229: 206–212CrossRefGoogle Scholar
  6. 6.
    Huang XS, Sun H, Wang LC, Liu YM, Fan KN, Cao Y. Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation. Appl Catal B, 2009, 90: 224–232CrossRefGoogle Scholar
  7. 7.
    Wu ZL, Li MJ, Overbury SH. On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes. J Catal, 2012, 285: 61–73CrossRefGoogle Scholar
  8. 8.
    Xie XW, Li Y, Liu ZQ, Haruta M, Shen WJ. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature, 2009, 458: 746–749CrossRefGoogle Scholar
  9. 9.
    Hu LH, Peng Q, Li YD. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J Am Chem Soc, 2008, 130: 16136–16137CrossRefGoogle Scholar
  10. 10.
    Meng B, Zhao ZB, Wang XZ, Liang JJ, Qiu JS. Selective catalytic reduction of nitrogen oxides by ammonia over Co3O4 nanocrystals with different shapes. Appl Catal B, 2013, 129: 491–500CrossRefGoogle Scholar
  11. 11.
    Lv YG, Li Y, Shen WJ. Synthesis of Co3O4 nanotubes and their catalytic applications in CO oxidation. Catal Commun, 2013, 42: 116–120CrossRefGoogle Scholar
  12. 12.
    Xie XW, Shen WJ. Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance. Nanoscale, 2009, 1: 50–60CrossRefGoogle Scholar
  13. 13.
    Wang DW, Wang QH, Wang TM. Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors. Inorg Chem, 2011, 50: 6482–6492CrossRefGoogle Scholar
  14. 14.
    Du Y, Ok KM, O’Hare D. A kinetic study of the phase conversion of layered cobalt hydroxides. J Mater Chem, 2008, 18: 4450–4459CrossRefGoogle Scholar
  15. 15.
    Rahbani J, Khashab NM, Patra D, Al-Ghoul M. Kinetics and mechanism of ionic intercalation/de-intercalation during the formation of a-cobalt hydroxide and its polymorphic transition to b-cobalt hydroxide: reaction-diffusion framework. J Mater Chem, 2012, 22: 16361–16369CrossRefGoogle Scholar
  16. 16.
    Hou YL, Kondoh H, Shimojo M, Kogure T, Ohta T. High-yield preparation of uniform cobalt hydroxide and oxide nanoplatelets and their characterization. J Phys Chem B, 2005, 109: 19094–19098CrossRefGoogle Scholar
  17. 17.
    Zhan FM, Geng BY, Guo YJ. Porous Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries. Chem Eur J, 2009, 15: 6169–6174CrossRefGoogle Scholar
  18. 18.
    Liang HY, Raitano JM, Zhang LH, Chan S-W. Controlled synthesis of Co3O4 nanopolyhedrons and nanosheets at low temperature. Chem Commun, 2009, 48: 7569–7571CrossRefGoogle Scholar
  19. 19.
    Chen LF, Hu JC, Richards R, Prikhodko S, Kodambaka S. Synthesis and surface activity of single-crystalline Co3O4 (111) holey nanosheets. Nanoscale, 2010, 2: 1657–1660CrossRefGoogle Scholar
  20. 20.
    Yang J, Liu HW, Martens WN, Frost RL. Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J Phys Chem C, 2010, 114: 111–119CrossRefGoogle Scholar
  21. 21.
    Chen JS, Zhu T, Hu QH, Gao JJ, Su FB, Qiao SZ, Lou XW. Shape-controlled synthesis of cobalt-based nanocubes, nanodiscs, and nanoflowers and their comparative lithium-storage properties. ACS Appl Mater Interfaces, 2010, 2: 3628–3635CrossRefGoogle Scholar
  22. 22.
    Sun CW, Rajasekhara S, Chen YJ, Goodenough JB. Facile synthesis of monodisperse porous Co3O4 microspheres with superior ethanol sensing properties. Chem Commun, 2011, 47: 12852–12854CrossRefGoogle Scholar
  23. 23.
    Fan YQ, Shao HB, Wang JM, Liu L, Zhang JQ, Cao CA. Synthesis of foam-like freestanding Co3O4 nanosheets with enhanced electrochemical activities. Chem Commun, 2011, 47: 3469–3471CrossRefGoogle Scholar
  24. 24.
    Teng YH, Kusano Y, Azuma M, Haruta M, Shimakawa Y. Morphology effects of Co3O4 nanocrystals catalyzing CO oxidation in a dry reactant gas stream. Catal Sci Technol, 2011, 1: 920–922CrossRefGoogle Scholar
  25. 25.
    Cheng JP, Chen X, Wu J-S, Liu F, Zhang XB, Dravid VP. Porous cobalt oxides with tunable hierarchical morphologies for supercapacitor electrodes. CrystEngComm, 2012, 14: 6702–6709CrossRefGoogle Scholar
  26. 26.
    Zhu JB, Bai LF, Sun YF, Zhang XD, Li QY, Cao BX, Yan WS, Xie Y. Topochemical transformation route to atomically thick Co3O4 nanosheets realizing enhanced lithium storageperformance. Nanoscale, 2013, 5: 5241–5246CrossRefGoogle Scholar
  27. 27.
    Li X, Xu GL, Fu F, Lin Z, Wang Q, Huang L, Li JT, Sun SG. Room-temperature synthesis of Co(OH)2 hexagonal sheets and their topotactic transformation into Co3O4 (111) porous structure with enhanced lithium-storage properties. Electrochim Acta, 2013, 96: 134–140CrossRefGoogle Scholar
  28. 28.
    Wang Y, Zhong ZY, Chen Y, Ng CT, Lin JY. Controllable synthesis of Co3O4 from nanosize to microsize with large-scale exposure of active crystal planes and their excellent rate capability in supercapacitors based on the crystal plane effect. Nano Res, 2011, 4: 695–704CrossRefGoogle Scholar
  29. 29.
    Wang X, Guan H, Chen S, Li HQ, Zhai TY, Tang DM, Bando Y, Golberg D. Self-stacked Co3O4 nanosheets for high-performance lithium ion batteries. Chem Commun, 2011, 47: 12280–12282CrossRefGoogle Scholar
  30. 30.
    Liu ZP, Ma RZ, Osada M, Takada K, Sasaki T. Selective and controlled synthesis of α- and β-cobalt hydroxides in highly developed hexagonal platelets. J Am Chem Soc, 2005, 127: 13869–13874CrossRefGoogle Scholar
  31. 31.
    Yang LX, Zhu YJ, Li L, Zhang L, Ting H, Wang WW, Cheng GF, Zhu JF. A facile hydrothermal route to flower-like cobalt hydroxide and oxide. Eur J Inorg Chem, 2006, 2006: 4787–4792CrossRefGoogle Scholar
  32. 32.
    Sharma S, Garg N, Ramanujachary KV, Lofland SE, Ganguli AK. Design of anisotropic Co3O4 nanostructures: control of particle size, assembly, and aspect ratio. Cryst Growth Des, 2012, 12: 4202–4210CrossRefGoogle Scholar
  33. 33.
    Zhang SR, Shan JJ, Zhu Y, Frenkel AI, Patlolla A, Huang WX, Yoon SJ, Wang L, Yoshida H, Takeda S, Tao F. WGS catalysis and in situ studies of CoO1−x, PtCon/Co3O4, and PtmCom/CoO1−x nanorod catalysts. J Am Chem Soc, 2013, 135: 8283–8293CrossRefGoogle Scholar
  34. 34.
    Liu Q, Wang L-C, Chen M, Cao Y, He H-Y, Fan K-N. Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total oxidation of propane. J Catal, 2009, 263: 104–113CrossRefGoogle Scholar
  35. 35.
    Teng F, Chen MD, Li GQ, Teng Y, Xu TG, Hang YC, Yao WQ, Santhanagopalan S, Meng DD, Zhu YF. High combustion activity of CH4 and catalluminescence properties of CO oxidation over porous Co3O4 nanorods. Appl Catal B, 2011, 110: 133–140CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations