Advertisement

Science China Chemistry

, Volume 56, Issue 4, pp 418–422 | Cite as

Linker extension through hard-soft selective metal coordination for the construction of a non-rigid metal-organic framework

  • ZhangWen Wei
  • DaQiang Yuan
  • XiaoLiang Zhao
  • DaoFeng SunEmail author
  • Hong-Cai ZhouEmail author
Communications Special Topic Nano and Functional Materials

Abstract

A metal-organic framework (MOF) has been obtained by using a linker extension strategy. Three di-anions of 4-(3,5-dimethyl-1H-pyrazol-4-yl)-benzoic acid coordinate to three Cu(I) ions forming an extended trigonal planar ligand, which links three di-copper paddlewheel units giving rise to a Pt3O4 net.

Keywords

MOF linker extension copper (I) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11426_2013_4851_MOESM1_ESM.pdf (507 kb)
Supplementary material, approximately 506 KB.

References

  1. 1.
    Férey G, Mellot-Draznieks C, Serre C, Millange F. Crystallized frameworks with giant pores: Are there limits to the possible? Acc Chem Res, 2005, 38(4): 217–225CrossRefGoogle Scholar
  2. 2.
    Ferey G, Serre C. Large breathing effects in three-dimensional porous hybrid matter: Facts, analyses, rules and consequences. Chem Soc Rev, 2009, 38(5): 1380–1399CrossRefGoogle Scholar
  3. 3.
    Horike S, Shimomura S, Kitagawa S. Soft porous crystals. Nat Chem, 2009, 1(9): 695–704CrossRefGoogle Scholar
  4. 4.
    Long JR, Yaghi OM. The pervasive chemistry of metal-organic frameworks. Chem Soc Rev, 2009, 38(5): 1213–1214CrossRefGoogle Scholar
  5. 5.
    Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J. Reticular synthesis and the design of new materials. Nature, 2003, 423(6941): 705–714CrossRefGoogle Scholar
  6. 6.
    Zhou H-C, Long JR, Yaghi OM. Introduction to metal-organic frameworks. Chem Rev, 2012, 112(2): 673–674CrossRefGoogle Scholar
  7. 7.
    Yin Z, Zeng MH. Recent advance in porous coordination polymers from the viewpoint of crystalline-state transformation. Sci China Chem, 2011, 54(9): 1371–1394CrossRefGoogle Scholar
  8. 8.
    Foo KY, Hameed BH. The environmental applications of activated carbon/zeolite composite materials. Adv Colloid Interfac, 2011, 162(1–2): 22–28CrossRefGoogle Scholar
  9. 9.
    Bastos-Neto M, Patzschke C, Lange M, Mollmer J, Moeller A, Fichtner S, Schrage C, Lassig D, Lincke J, Krautscheid H, Staudt R, Glaser R. Assessment of hydrogen storage by physisorption in porous materials. Energy Environ Sci, 2012, 5: 8294–8303CrossRefGoogle Scholar
  10. 10.
    Ma S, Zhou H-C. Gas storage in porous metal-organic frameworks for clean energy applications. Chem Commun, 2010, 46(1): 44–53CrossRefGoogle Scholar
  11. 11.
    Li J-R, Sculley J, Zhou H-C. Metal-organic frameworks for separations. Chem Rev, 2012, 112(2): 869–932CrossRefGoogle Scholar
  12. 12.
    Suh MP, Park HJ, Prasad TK, Lim D-W. Hydrogen storage in metal-organic frameworks. Chem Rev, 2012, 112(2): 782–835CrossRefGoogle Scholar
  13. 13.
    Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T-H, Long JR. Carbon dioxide capture in metal-organic frameworks. Chem Rev, 2012, 112(2): 724–781CrossRefGoogle Scholar
  14. 14.
    Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature, 2000, 404: 982–986CrossRefGoogle Scholar
  15. 15.
    Farrusseng D, Aguado S, Pinel C. Metal-organic frameworks: Opportunities for catalysis. Angew Chem Int Ed, 2009, 48(41): 7502–7513CrossRefGoogle Scholar
  16. 16.
    Ma L, Abney C, Lin W. Enantioselective catalysis with homochiral metal-organic frameworks. Chem Soc Rev, 2009, 38(5): 1248–1256CrossRefGoogle Scholar
  17. 17.
    Corma A, García H, Llabrés i Xamena FX. Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev, 2010, 110(8): 4606–4655CrossRefGoogle Scholar
  18. 18.
    Jiang H-L, Xu Q. Porous metal-organic frameworks as platforms for functional applications. Chem Commun, 2011, 47(12): 3351–3370CrossRefGoogle Scholar
  19. 19.
    Chen B, Xiang S, Qian G. Metal-organic frameworks with functional pores for recognition of small molecules. Acc Chem Res, 2010, 43(8): 1115–1124CrossRefGoogle Scholar
  20. 20.
    Jiang H-L, Tatsu Y, Lu Z-H, Xu Q. Non-, micro-, and mesoporous metal-organic framework isomers: Reversible transformation, fluorescence sensing, and large molecule separation. J Am Chem Soc, 2010, 132(16): 5586–5587CrossRefGoogle Scholar
  21. 21.
    Takashima Y, Martínez VM, Furukawa S, Kondo M, Shimomura S, Uehara H, Nakahama M, Sugimoto K, Kitagawa S. Molecular decoding using luminescence from an entangled porous framework. Nat Commun, 2011, 2: 168CrossRefGoogle Scholar
  22. 22.
    Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT. Metal-organic framework materials as chemical sensors. Chem Rev, 2012, 112(2): 1105–1125CrossRefGoogle Scholar
  23. 23.
    An J, Geib SJ, Rosi NL. Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. J Am Chem Soc, 2009, 131(24): 8376–8377CrossRefGoogle Scholar
  24. 24.
    Della Rocca J, Liu D, Lin W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res, 2011, 44(10): 957–968CrossRefGoogle Scholar
  25. 25.
    Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Férey G, Morris RE, Serre C. Metal-organic frameworks in biomedicine. Chem Rev, 2012, 112(2): 1232–1268CrossRefGoogle Scholar
  26. 26.
    Zhao D, Yuan D, Zhou H-C. The current status of hydrogen storage in metal-organic frameworks. Energy Environ Sci, 2008, 1(2): 222–235CrossRefGoogle Scholar
  27. 27.
    Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AÖ, Snurr RQ, O’Keeffe M, Kim J, Yaghi OM. Ultrahigh porosity in metal-organic frameworks. Science, 2010, 329(5990): 424–428CrossRefGoogle Scholar
  28. 28.
    Yuan D, Zhao D, Sun D, Zhou H-C. An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew Chem Int Ed, 2010, 49(31): 5357–5361CrossRefGoogle Scholar
  29. 29.
    Zhao D, Yuan D, Sun D, Zhou H-C. Stabilization of metal-organic frameworks with high surface areas by the incorporation of mesocavities with microwindows. J Am Chem Soc, 2009, 131(26): 9186–9188CrossRefGoogle Scholar
  30. 30.
    Zhao D, Timmons DJ, Yuan D, Zhou H-C. Tuning the topology and functionality of metal-organic frameworks by ligand design. Acc Chem Res, 2011, 44(2): 123–133CrossRefGoogle Scholar
  31. 31.
    Stork JR, Thoi VS, Cohen SM. Rare examples of transition-metalmain-group metal heterometallic metal-organic frameworks from gallium and indium dipyrrinato complexes and silver salts: Synthesis and framework variability. Inorg Chem, 2007, 46(26): 11213–11223CrossRefGoogle Scholar
  32. 32.
    Halper SR, Do L, Stork JR, Cohen SM. Topological control in heterometallic metal-organic frameworks by anion templating and metalloligand design. J Am Chem Soc, 2006, 128(47): 15255–15268CrossRefGoogle Scholar
  33. 33.
    Scott TA, Abbaoui B, Zhou H-C. Crystallographic evidence for chromium-platinum interaction. Inorg Chem, 2004, 43(8): 2459–2461CrossRefGoogle Scholar
  34. 34.
    Zhong DC, Lu TB. Porous coordination polymers based on three planar rigid ligands. Sci China Chem, 2011, 54(9): 1395–1406CrossRefGoogle Scholar
  35. 35.
    He J, Yin YG, Wu T, Li D, Huang XC. Design and solvothermal synthesis of luminescent copper(i)-pyrazolate coordination oligomer and polymer frameworks. Chem Commun, 2006, (27): 2845–2847Google Scholar
  36. 36.
    Zhang JP, Kitagawa S. Supramolecular isomerism, framework flexibility, unsaturated metal center, and porous property of ag(i)/cu(i) 3,3′,5,5′-tetrametyl-4,4′-bipyrazolate. J Am Chem Soc, 2008, 130(3): 907–917CrossRefGoogle Scholar
  37. 37.
    Zhang JX, He J, Yin YG, Hu MH, Li D, Huang XC. Novel thermochromism relating to supramolecular cuprophilic interaction: Design, synthesis, and luminescence of copper(i) pyrazolate trimer and polymer. Inorg Chem, 2008, 47(9): 3471–3473CrossRefGoogle Scholar
  38. 38.
    Lo SMF, Chui SSY, Shek LY, Lin ZY, Zhang XX, Wen GH, Williams ID. Solvothermal synthesis of a stable coordination polymer with copper-i-copper-ii dimer units: Cu(4){1,4-c(6)h(4)(coo)(2) }(3)(4,4′-bipy)2 (n). J Am Chem Soc, 2000, 122(26): 6293–6294CrossRefGoogle Scholar
  39. 39.
    Chen B, Eddaoudi M, Hyde ST, O’Keeffe M, Yaghi OM. Interwoven metal-organic framework on a periodic minimal surface with extralarge pores. Science, 2001, 291(5506): 1021–1023CrossRefGoogle Scholar
  40. 40.
    Sun D, Ke Y, Mattox TM, Parkin S, Zhou H-C. Stability and porosity enhancement through concurrent ligand extension and secondary building unit stabilization. Inorg Chem, 2006, 45(19): 7566–7568CrossRefGoogle Scholar
  41. 41.
    Sun DF, Ma SQ, Ke YX, Collins DJ, Zhou HC. An interweaving mof with high hydrogen uptake. J Am Chem Soc, 2006, 128(12): 3896–3897CrossRefGoogle Scholar
  42. 42.
    Spek A. Single-crystal structure validation with the program platon. J Appl Crystallogr, 2003, 36(1): 7–13CrossRefGoogle Scholar
  43. 43.
    Dias HVR, Diyabalanage HVK, Eldabaja MG, Elbjeirami O, Rawashdeh-Omary MA, Omary MA. Brightly phosphorescent trinuclear copper(i) complexes of pyrazolates: Substituent effects on the supramolecular structure and photophysics. J Am Chem Soc, 2005, 127(20): 7489–7501CrossRefGoogle Scholar
  44. 44.
    He J, Yin Y-G, Wu T, Li D, Huang XC. Design and solvothermal synthesis of luminescent copper(i)-pyrazolate coordination oligomer and polymer frameworks. Chem Commun, 2006, (27): 2845–2847Google Scholar
  45. 45.
    Zhang J-P, Kitagawa S. Supramolecular isomerism, framework flexibility, unsaturated metal center, and porous property of ag(i)/cu(i) 3,3′,5,5′-tetrametyl-4,4′-bipyrazolate. J Am Chem Soc, 2008, 130(3): 907–917CrossRefGoogle Scholar
  46. 46.
    Gao G-F, Li M, Zhan SZ, Lv Z, Chen G-h, Li D. Confined metallophilicity within a coordination prism. Chem Eur J, 2011, 17(15): 4113–4117CrossRefGoogle Scholar
  47. 47.
    Ramsahye NA, Trung TK, Bourrelly S, Yang QY, Devic T, Maurin G, Horcajada P, Llewellyn PL, Yot P, Serre C, Filinchuk Y, Fajula F, Ferey G, Trens P. Influence of the organic ligand functionalization on the breathing of the porous iron terephthalate metal organic framework type material upon hydrocarbon adsorption. J Phys Chem C, 2011, 115(38): 18683–18695CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of ChemistryTexas A&M UniversityCollege StationUSA
  2. 2.Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina
  3. 3.Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical EngineeringShandong UniversityJinanChina

Personalised recommendations