Science China Chemistry

, Volume 56, Issue 4, pp 435–442 | Cite as

One-step hydrothermal synthesis of hierarchical Ag/Bi2WO6 composites: In situ growth monitoring and photocatalytic activity studies

Articles Special Topic Nano and Functional Materials

Abstract

Hierarchical Ag/Bi2WO6 nanomaterials were prepared by a facile one-step hydrothermal method in mixed acetic acid and ethylene glycol (EG) medium. EG is employed as mild reducing agent for the formation of metallic Ag from Ag+ precursors. In situ energy dispersive X-ray diffraction (EDXRD) monitoring showed that the hydrothermal formation kinetics of Bi2WO6 in the presence of EG was significantly slowed down due to its very high viscosity. The photocatalytic activities of Ag/Bi2WO6 composites were evaluated by the photodegradation of methylene blue (MB) under visible light irradiation. The photocatalytic activity of Bi2WO6 is strongly influenced by the Ag loading. The enhanced catalytic activity of the composites is based on the cooperative effects of plasmon absorption band and separation of photogenerated electron-hole pairs.

Keywords

Ag/Bi2WO6 composites in situ EDXRD photocatalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11426_2013_4846_MOESM1_ESM.pdf (538 kb)
Supplementary material, approximately 538 KB.

References

  1. 1.
    Hernández-Alonso MD, Fresno F, Suárez S, Coronado JM. Development of alternative photocatalysts to TiO2: Challenges and opportunities. Energy Environ Sci, 2009, 2: 1231–1257CrossRefGoogle Scholar
  2. 2 (a).
    Kudo A, Miseki Y. Phosphines as building blocks in coordination-based self-assembly. Chem Soc Rev, 2009, 38: 1744–1758CrossRefGoogle Scholar
  3. 2 (b).
    Liu G, Yu JC, Lu GQ, Cheng HM. Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chem Commun, 2011, 47: 6763–6783CrossRefGoogle Scholar
  4. 2 (c).
    Ohtani B. Photocatalysis A to Z — What we know and what we do not know in a scientific sense. J Photochem Photobiol C, 2010, 11: 157–178CrossRefGoogle Scholar
  5. 3.
    Yi ZG, Ye JH, Kikugawa, N, Kako T, Ouyang SX, Stuart-Williams H, Yang H, Cao JY, Luo WJ, Li ZS, Liu Y, Withers RL. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat Mater, 2010, 9: 559–564CrossRefGoogle Scholar
  6. 4.
    Wang XC, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater, 2009, 8: 76–80CrossRefGoogle Scholar
  7. 5 (a).
    Chen XB, Liu L, Yu PY, Mao SS. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331: 746–750CrossRefGoogle Scholar
  8. 5 (b).
    Li XZ, Zhao W, Zhao JC. Visible light-sensitized semiconductor photocatalytic. Sci China Chem, 2002, 45: 421–425CrossRefGoogle Scholar
  9. 6.
    Kudo K, Hijii S. H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6 s (2) configuration and d (0) transition metal ions. Chem Lett, 1999, 10: 1103–1104CrossRefGoogle Scholar
  10. 7.
    Zhou Y, Tian ZP, Zhao ZY, Liu Q, Kou JH, Chen XY, Gao J, Yan SC, Zou ZG. High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light. ACS App Mater Inter, 2011, 3: 3594–3601CrossRefGoogle Scholar
  11. 8.
    Tang JW, Zou ZG, Ye JH. Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation. Catal Lett, 2004, 92: 53–56CrossRefGoogle Scholar
  12. 9.
    Shi R, Huang GL, Lin J, Zhu YF. Photocatalytic activity enhancement for Bi2WO6 by fluorine substitution. J Phys Chem C, 2009, 113: 19633–19638CrossRefGoogle Scholar
  13. 10.
    Yu HG, Irie H, Hashimoto K. Conduction band energy level control of titanium dioxide towards an efficient visible light-sensitive photocatalyst. J Am Chem Soc, 2010, 132: 6898–8999CrossRefGoogle Scholar
  14. 11.
    Qiu XQ, Miyauchi M, Yu HG, Irie H, Hashimoto K. Visi ble-light-driven Cu(II)-(Sr(1−y)Na(y))(Ti(1−x)Mo(x))O3 photocatalysts based on conduction band control and surface ion modification. J Am Chem Soc, 2010, 132: 15259–15267CrossRefGoogle Scholar
  15. 12.
    Zhang LW, Man YM, Zhu YF. Effects of Mo replacement on the structure and visible-light-induced photocatalytic performances of Bi2WO6 photocatalyst. ACS Catal, 2011, 1: 841–848CrossRefGoogle Scholar
  16. 13.
    He DQ, Wang LL, Xu DD, Zhai JL, Wang DJ, Xie TF. Investigation of photocatalytic activities over Bi2WO6/ZnWO4 composite under UV light and its photoinduced charge transfer properties. ACS Appl Mater Inter, 2011, 3: 3167–3171CrossRefGoogle Scholar
  17. 14.
    Zhou Y, Krumeich F, Heel A, Patzke GR. One-step hydrothermal coating approach to photocatalytically active oxide composites. Dalton Trans, 2010, 39: 6043–6048CrossRefGoogle Scholar
  18. 15.
    Ge M, Li YF, Liu L, Zhou Z, Chen W. Bi2O3-Bi2WO6 composite microspheres: hydrothermal synthesis and photocatalytic performances. J Phys Chem C, 2011, 115: 5220–5223CrossRefGoogle Scholar
  19. 16.
    Zhang ZJ, Wang WZ, Wang L, Sun SM. Enhancement of visible-light photocatalysis by coupling with narrow-band-gap semiconductor: a case study on Bi2S3/Bi2WO6. ACS Appl Mate Inter, 2012, 4: 593–597CrossRefGoogle Scholar
  20. 17.
    Wang YJ, Bai, XJ, Pan CS, He J, Zhu YF. Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4. J Mater Chem, 2012, 22: 11568–11573CrossRefGoogle Scholar
  21. 18.
    Wang WC, Yang, WJ, Chen R, Duan XB, Tian YL, Zeng DW, Shan B. Investigation of band offsets of interface BiOCl:Bi2WO6: a first-principles study. Phys Chem Chem Phys, 2012, 14: 2450–2454CrossRefGoogle Scholar
  22. 19.
    Zhang LS, Wang WZ, Zhou L, Xu HL. Bi2WO6 Nano- and microstructures: Shape control and associated visible-light-driven photocatalytic activities. Small, 2007, 3: 1618–1625CrossRefGoogle Scholar
  23. 20 (a).
    Dong F, Zheng A, Sun YJ, Fu M, Jiang BQ, Ho WK, Lee SC, Wu ZB. One-pot template-free synthesis, growth mechanism and enhanced photocatalytic activity of monodisperse (BiO)2CO3 hierarchical hollow microspheres self-assembled with single-crystalline nanosheets. CrystEngComm, 2012, 14: 3534–3544CrossRefGoogle Scholar
  24. 20 (b).
    Dong F, Sun YJ, Ho WK, Wu ZB. Controlled synthesis, growth mechanism and highly efficient solar photocatalysis of nitrogen-doped bismuth subcarbonate hierarchical nanosheets architectures. Dalton Trans, 2012, 41: 8270–8284CrossRefGoogle Scholar
  25. 21.
    Awazu K, Fujimaki M, Rockstuhl, C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc, 2008, 130: 1676–1680CrossRefGoogle Scholar
  26. 22.
    Ren J, Wang Z, Sun SM, Zhang L, Chang J. Enhanced photocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation. Appl Catal B, 2009, 92: 50–55CrossRefGoogle Scholar
  27. 23.
    Wang DJ, Xue GL, Zhen YZ, Fu F, Li DS. Monodispersed Ag nanoparticles loaded on the surface of spherical Bi2WO6 nanoarchitectures with enhanced photocatalytic activities. J Mater Chem, 2012, 22: 4751–4758CrossRefGoogle Scholar
  28. 24.
    Zhou Y, Vuille K, Heel A, Patzke GR. Studies on nanostructured Bi2WO6: convenient hydrothermal and TiO2-coating pathways. Z Anorg Allg Chem, 2009, 635: 1848–1855CrossRefGoogle Scholar
  29. 25.
    Zhou Y, Antonova E, Bensch W, Patzke GR. In situ X-ray diffraction study of the hydrothermal crystallization of hierarchical Bi2WO6 nanostructures. Nanoscale, 2010, 2: 2412–2417CrossRefGoogle Scholar
  30. 26 (a).
    Feldmann C. Polyol-mediated synthesis of nanoscale functional materials. Solid State Sci, 2005, 7: 868–873CrossRefGoogle Scholar
  31. 26 (b).
    Feldmann C. Preparation of nanoscale pigment particles. Adv Mater, 2001, 13: 1301–1303CrossRefGoogle Scholar
  32. 26 (c).
    Zhou Y, Jin SM, Qiu GZ, Yang M. Preparation of ultrafine nickel powder by polyol method and its oxidation product. Mater Sci Eng B, 2005, 122: 222–225CrossRefGoogle Scholar
  33. 27.
    Sarma LS, Chen CH, Kumar SM, Wang GR, Yen SC, Liu DG, Sheu HS, Yu KL, Tang MT, Lee JF, Bock C, Chen KH, Hwang BJ. Formation of Pt-Ru nanoparticles in ethylene glycol solution: An in situ X-ray absorption spectroscopy study. Langmuir, 2007, 23: 5802–5809CrossRefGoogle Scholar
  34. 28.
    Chen Y, Liew KY, Li JL. Size-controlled synthesis of Ru nanoparticles by ethylene glycol reduction. Mater Lett, 2008, 62: 1018–1921CrossRefGoogle Scholar
  35. 29 (a).
    Yang T, Xia D, Self-assembly of highly crystalline spherical BiVO4 in aqueous solutions. J Cryst Growth, 2009, 311: 4505–4509CrossRefGoogle Scholar
  36. 29 (b).
    Galy J, Hernandez-Velasco J, Landa-Canovas AR, Vila E, Castro A. Ab initio structure determination and Rietveld refinement of Bi10Mo3O24 the member n = 3 of the Bi2n+4MonO6(n+1) series. J Solid State Chem, 2009, 182: 1177–1187CrossRefGoogle Scholar
  37. 30.
    Hu C, Lan YQ, Hu XX, Wang AM. Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J Phys Chem B, 2006, 110: 4066–4072CrossRefGoogle Scholar
  38. 31 (a).
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniwska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem, 1985, 57: 603–609CrossRefGoogle Scholar
  39. 31 (b).
    Yu J, Yu H, Cheng B, Trapalis C. Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes. J Mol Catal A, 2006, 249: 135–142CrossRefGoogle Scholar
  40. 32.
    Zhou Y, Antonova E, Lin YH, Grunwaldt JD, Bensch W, Patzke GR. In situ X-ray absorption spectroscopy/energy-dispersive X-ray diffraction studies on the hydrothermal formation of Bi2W1-xMoxO6 nanomaterials. Eur J Inorg Chem, 2012, 783–789Google Scholar
  41. 33.
    Zhou Y, Pienack N, Bensch W, Patzke GR. The interplay of crystallization kinetics and morphology in nanostructured W/Mo oxide formation: an in situ diffraction study. Small, 2009, 5: 1978–1983CrossRefGoogle Scholar
  42. 34.
    Engelke L, Schaefer M, Schur M, Bensch W. In situ X-ray diffraction studies of the crystallization of layered manganese thioantimonates( III) under hydrothermal conditions. Chem Mater, 2001, 13: 1383–1390CrossRefGoogle Scholar
  43. 35.
    Michailovski A, Kiebach R, Bensch W, Grunwaldt JD, Baiker A, Komarneni S, Patzke GR. Morphological and kinetic studies on hexagonal tungstates. Chem Mater, 2007, 19: 185–197CrossRefGoogle Scholar
  44. 36.
    Leng WH, Zhang Z, Zhang JQ, Cao CN. Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy. J Phys Chem B, 2005, 109: 15008–15023CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and ExploitationSouthwest Petroleum UniversityChengduChina
  2. 2.School of Materials Science and EngineeringSouthwest Petroleum UniversityChengduChina
  3. 3.Institute of Inorganic ChemistryUniversity of KielKielGermany
  4. 4.Institute of Inorganic ChemistryUniversity of ZurichZurichSwitzerland

Personalised recommendations