Science China Chemistry

, Volume 56, Issue 5, pp 595–603 | Cite as

New strategy for reversing biofilm-associated antibiotic resistance through ferrocene-substituted carborane ruthenium(II)-arene complex

  • ShuiHong Li
  • ChangYu Wu
  • Xiao Tang
  • ShengPing Gao
  • XinQing Zhao
  • Hong Yan
  • XueMei Wang
Articles

Abstract

Bacterial biofilms are inherently resistant to antimicrobial agents and are difficult to eradicate with conventional antimicrobial agents, resulting in many persistent and chronic bacterial infections. In this contribution, a new strategy for reversing the biofilm-associated antibiotic resistance has been explored by induction of a carborane ruthenium(II)-arene complex (FcRuSB). Our results demonstrate that the FcRuSB could be utilized as an inducer to efficiently reverse the biofilm-associated antibiotic resistance of multidrug-resistant (MDR) clinical isolates of Staphylococcus aureus and Pseudomonas aeruginosa. The induced effect of FcRuSB is correlated with a considerable decrease in the expression of extracellular matrix proteins (EMP) of the two strains. The considerable decrease of the EMP of induced cells, resulting in the reduction of adherence and biofilm formation ability of the two types of MDR pathogens, and then can cause significantly enhanced sensitivity of them to antibiotics.

Keywords

bacterial biofilms carborane ruthenium(II)-arene complex antibiotic resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liu HL, Chen JN, Jiang J, Giesy JP, Yu HX, Wang XR. Cytotoxicity of HC Orange NO. 1 to L929 fibroblast cells. Environ Toxicol Phar, 2008, 26: 309–314Google Scholar
  2. 2.
    Potera C. Forging a link between biofilms and disease. Science, 1999, 283: 1837–1839Google Scholar
  3. 3.
    Davey ME, O’toole GA. Microbial biofilms: From ecology to molec ular genetics. Microbiol Mol Biol R, 2000, 64: 847–867Google Scholar
  4. 4.
    Smith K, Perez A, Ramage G, Gemmell CG, Lang S. Comparison of biofilm-associated cell survival following in vitro exposure of meticillin-resistant Staphylococcus aureus biofilms to the antibiotics clin-damycin, daptomycin, linezolid, tigecycline and vancomycin. Int J Antimicrob Ag, 2009, 33: 374–378Google Scholar
  5. 5.
    Gilbert P, Das J, Foley I. Biofilm susceptibility to antimicrobials. Adv Dent Res, 1997, 11: 160–167Google Scholar
  6. 6.
    Lefebvre F, Putaj P, Basset JM, Wang XX, Fu XZ. Modification of the adsorption and catalytic properties of micro- and mesoporous materials by reactions with organometallic complexes. Science China-chemistry, 2010, 53: 1862–1869Google Scholar
  7. 7.
    Fish RH, Jaouen G. Bioorganometallic chemistry: Structural diversity of organometallic complexes with bioligands and molecular recognition studies of several supramolecular hosts with biomolecules, alkalimetal ions, and organometallic pharmaceuticals. Organometallics, 2003, 22: 2166–2177Google Scholar
  8. 8.
    van Staveren DR, Metzler-Nolte N. Bioorganometallic chemistry of ferrocene. Chem Rev, 2004, 104: 5931–5985Google Scholar
  9. 9.
    Chantson JT, Falzacappa MVV, Crovella S, Metzler-Nolte N. Antibacterial activities of ferrocenoyl- and cobaltocenium-peptide bioconjugates. J Organomet Chem, 2005, 690: 4564–4572Google Scholar
  10. 10.
    Asghar F, Badshah A, Shah A, Rauf MK, Ali MI, Tahir MN, Nosheen E, Rehman Z, Qureshi R. Synthesis, characterization and DNA binding studies of organoantimony(V) ferrocenyl benzoates. J Organomet Chem, 2012, 717: 1–8Google Scholar
  11. 11.
    Arbi ME, Pigeon P, Top S, Rhouma A, Aifa S, Rebai A, Vessières A, Plamont MA, Jaouen G. Evaluation of bactericidal and fungicidal activity of ferrocenyl or phenyl derivatives in the diphenyl butene series. J Organomet Chem, 2011, 696: 1038–1048Google Scholar
  12. 12.
    Plażuk D, Rychlik B, Blauz A, Domagała S. Synthesis, electrochemistry and anticancer activity of novel ferrocenyl phenols prepared via azide-alkyne 1,3-cycloaddition reaction. J Organomet Chem, 2012, 715: 102–112Google Scholar
  13. 13.
    Ornelas C. Application of ferrocene and its derivatives in cancer research. New J Chem, 2011, 35: 1973–1985Google Scholar
  14. 14.
    Delhaes L, Biot C, Berry L, Delcourt P, Maciejewski LA, Camus D, Brocard JS, Dive D. Synthesis of ferroquine enantiomers: First investigation of effects of metallocenic chirality upon antimalarial activity and cytotoxicity. ChemBioChem, 2002, 3: 418–423Google Scholar
  15. 15.
    Biot C, Taramelli D, Forfar-Bares I, Maciejewski LA, Boyce M, Nowogrocki G, Brocard JS, Basilico N, Olliaro P, Egan TJ. Insights into the mechanism of action of ferroquine. Relationship between physicochemical properties and antiplasmodial activity. Mol Pharmaceutics, 2005, 2: 185–193Google Scholar
  16. 16.
    Biot C, Delhaes L, Abessolo H, Domarle O, Maciejewski LA, Mortuaire M, Delcourt P, Deloron P, Camus D, Dive D, Brocard JS. Novel metallocenic compounds as antimalarial agents. Study of the position of ferrocene in chloroquine. J Organomet Chem, 1999, 589: 59–65Google Scholar
  17. 17.
    Jaouen G, Top S, Vessieres A, Leclercq G, McGlinchey MJ. The first organometallic selective estrogen receptor modulators (SERMs) and their relevance to breast cancer. Curr Med Chem, 2004, 11: 2505–2517Google Scholar
  18. 18.
    Top S, Vessieres A, Leclercq G, Quivy J, Tang J, Vaissermann J, Huche M, Jaouen G. Synthesis, biochemical properties and molecular modelling studies of organometallic specific estrogen receptor modulators (SERMs), the ferrocifens and hydroxyferrocifens: Evidence for an antiproliferative effect of hydroxyferrocifens on both hormone-dependent and hormone-independent breast cancer cell lines. Chem-Eur J, 2003, 9: 5223–5236Google Scholar
  19. 19.
    Edwards EI, Epton R, Marr G. Organometallic derivatives of penicillins and cephalosporins a new class of semi-synthetic antibiotics. J Organomet Chem, 1975, 85: C23–C25Google Scholar
  20. 20.
    Edwards EI, Epton R, Marr G. A new class of semi-synthetic antibiotics: Ferrocenyl-penicillins and -cephalosporins. J Organomet Chem, 1976, 107: 351–357Google Scholar
  21. 21.
    Valliant JF, Guenther KJ, King AS, Morel P, Schaffer P, Sogbein OO, Stephenson KA. The medicinal chemistry of carboranes. Coord Chem Re, 2002, 232: 173–230Google Scholar
  22. 22.
    Wu CH, Ye HD, Jiang H, Wang XM, Yan H. Study on specific interaction of new ferrocene-substituted carborane conjugates with hemoglobin protein. Sci China Chem, 2012, 55: 594–603Google Scholar
  23. 23.
    Armstrong AF, Valliant JF. The bioinorganic and medicinal chemistry of carboranes: From new drug discovery to molecular imaging and therapy. Dalton T, 2007, 4240-4251Google Scholar
  24. 24.
    Li SH, Wu CY, Lv XY, Tang X, Zhao XQ, Yan H, Jiang H, Wang XM. Discovery of ferrocene-carborane derivatives as novel chemical antimicrobial agents against multidrug-resistant bacteria. Sci China Chem, 2012, 55: 2388–2395Google Scholar
  25. 25.
    Bregadze VI, Sivaev IB, Glazun SA. Polyhedral boron compounds as potential diagnostic and therapeutic antitumor agents. Anticancer Agents Med Chem, 2006, 6: 75–109Google Scholar
  26. 26.
    Soloway AH, Tjarks W, Barnum BA, Rong FG, Barth RF, Codogni IM, Wilson JG. The chemistry of neutron capture therapy. Chem Rev, 1998, 98: 1515–1562Google Scholar
  27. 27.
    Miyajima Y, Nakamura H, Kuwata Y, Lee JD, Masunaga S, Ono K, Maruyama K. Transferrin-loaded nido-carborane liposomes: Tumor-targeting boron delivery system for neutron capture therapy. Bioconjugate Chem, 2006, 17: 1314–1320Google Scholar
  28. 28.
    Wu CH, Wu DH, Liu X, Guoyiqibayi G, Guo DD, Lv G, Wang XM, Yan H, Jiang H, Lu ZH. Ligand-based neutral ruthenium(II) arene complex: Selective anticancer action. Inorg chem, 2009, 48: 2352–2354Google Scholar
  29. 29.
    Wu DH, Wu CH, Li YZ, Guo DD, Wang XM, Yan H. Addition of ethynylferrocene to transition-metal complexes containing a chelating 1,2-dicarba-closo-dodecaborane-1,2-dichalcogenolate ligand—in vitro cooperativity of a ruthenium compound on cellular uptake of an anticancer drug. Dalton T, 2009, 285-290Google Scholar
  30. 30.
    Wu C, Ye H, Bai W, Li Q, Guo D, Lv G, Yan H, Wang X. New potential anticancer agent of carborane derivatives: Selective cellular interaction and activity of ferrocene-substituted dithio-o-carborane conjugates. Bioconjugate Chem, 2011, 22: 16–25Google Scholar
  31. 31.
    Xu BH, Peng XQ, Li YZ, Yan H. Reactions of 16e CpCo half-sandwich complexes containing a chelating 1,2-dicarba-closo-dodecaborane-1,2-dichalcogenolate ligand with ethynylferrocene and dimethyl acetylenedicarboxylate. Chem-Eur J, 2008, 14: 9347–9356Google Scholar
  32. 32.
    Xu BH, Peng XQ, Xu ZW, Li YZ, Yan H. Cobalt(III)-mediated disulfuration and hydrosulfuration of alkynes. Inorg Chem, 2008, 47: 7928–7933Google Scholar
  33. 33.
    Wu C, Xu B, Zhao J, Jiang Q, Wei F, Jiang H, Wang X, Yan H. Ferrocene-substituted dithio-o-carborane isomers: Influence on the native conformation of myoglobin protein. Chem-Eur J, 2010, 16: 8914–8922Google Scholar
  34. 34.
    Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard, 8th ed, Document M7-A8, Wayne, PA: CLSI, 2008Google Scholar
  35. 35.
    Pettit RK, Weber CA, Kean MJ, Hoffmann H, Pettit GR, Tan R, Franks KS, Horton ML. Microplate alamar blue assay for Staphylococcus epidermidis biofilm susceptibility testing. Antimicrob Agents Ch, 2005, 49: 2612–2617Google Scholar
  36. 36.
    Hirose I, Sano K, Shioda I, Kumano M, Nakamura K, Yamane K. Proteome analysis of Bacillus subtilis extracellular proteins: A two-dimensional protein electrophoretic study. Microbiology+, 2000, 146: 65–75Google Scholar
  37. 37.
    Tunney MM, Ramage G, Field TR, Moriarty TF, Storey DG. Rapid colorimetric assay for antimicrobial susceptibility testing of Pseudomonas aeruginosa. Antimicrob Agents Ch, 2004, 48: 1879–1881Google Scholar
  38. 38.
    Kwon AS, Park GC, Ryu SY, Lim DH, Lim DY, Choi CH, Park Y, Lim Y. Higher biofilm formation in multidrug-resistant clinical isolates of Staphylococcus aureus. Int J Antimicrob Ag, 2008, 32: 68–72Google Scholar
  39. 39.
    Corrigan RM, Rigby D, Handley P, Foster TJ. The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiology+, 2007, 153: 2435–2446Google Scholar
  40. 40.
    Mengodin E, Bajolet O, Cutrona J, Bonnet N, Dupuit F, Puchelle E, de Bentzmann S. Fibronectin-binding proteins of Staphylococcus aureus are involved in adherence to human airway epithelium. Infect Immun, 2002, 70: 620–630Google Scholar
  41. 41.
    Joh D, Wann ER, Kreikemeyer B, Speziale P, Höök M. Role of fibronectin-binding MSCRAMMs in bacterial adherence and entry into mammalian cells. Matrix Biol, 1999, 18: 211–223Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • ShuiHong Li
    • 1
  • ChangYu Wu
    • 1
  • Xiao Tang
    • 2
  • ShengPing Gao
    • 1
  • XinQing Zhao
    • 3
  • Hong Yan
    • 2
  • XueMei Wang
    • 1
  1. 1.State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory)Southeast UniversityNanjingChina
  2. 2.School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina
  3. 3.School of Life Science and BiotechnologyDalian University of TechnologyDalianChina

Personalised recommendations