Science China Chemistry

, Volume 56, Issue 1, pp 3–23 | Cite as

Survey of recent advances of in the field of π-conjugated heterocyclic azomethines as materials with tuneable properties

  • Andréanne Bolduc
  • Charlotte Mallet
  • W. G. SkeneEmail author
Reviews Special Topic Materials Research at Université de Montréal


This account gives an overview of our recent work in the area of conjugated azomethines derived from 2-aminothiophenes. It will be presented that mild reaction conditions can be used to selectively prepare symmetric and unsymmetric conjugated azomethines. It further will be demonstrated that azomethines consisting of various 5-membered aryl heterocycles lead to chemically, reductively, hydrolytically, and oxidatively robust compounds. The optical and electrochemical properties of these materials can be tuned contingent on the degree of conjugation, type of aryl heterocycle, and by including various electronic groups. The end result is materials having colors spanning 250 nm across the visible spectrum. These colors further can be tuned via electrochemical or chemical doping. The resulting doped states have high color contrasts from their corresponding neutral states. The collective opto-electronic properties and the means to readily tune them, make thiophenoazomethine derivatives interesting materials for potential use in a gamut of applications.


review azomethines electronic push-pull electrochromism polymers thiophene conjugated materials X-ray crystallography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chiang CK, Fincher CRJ, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG. Electrical conductivity in doped polyacetylene. Phys Rev Lett, 1977, 39(17): 1098–1101CrossRefGoogle Scholar
  2. 2.
    Morin JF, Leclerc M, Adès D, Siove A. Polycarbazoles: 25 years of progress. Macromol Rapid Commun, 2005, 26(10): 761–778CrossRefGoogle Scholar
  3. 3.
    Klärner G, Müller M, Morgenroth F, Wehmeier M, Soczka-Guth T, Müllen K. Conjugated oligomers and polymers —New routes, new structures. Synthetic Met, 1997, 84(1–3): 297–301CrossRefGoogle Scholar
  4. 4.
    Rasmussen SC, Schwiderski RL, Mulholland ME. Thieno[3,4-b]pyrazines and their applications to low band gap organic materials. Chem Commun, 2011, 47(41): 11394–11410CrossRefGoogle Scholar
  5. 5.
    Mishra A, Ma CQ, Bäuerle P. Functional oligothiophenes: Molecular design for multidimensional nanoarchitectures and their applications. Chem Rev, 2009, 109(3): 1141–1276CrossRefGoogle Scholar
  6. 6.
    Schlüter AD. The tenth anniversary of suzuki polycondensation (spc). J Polym Sci Pol Chem, 2001, 39(10): 1533–1556CrossRefGoogle Scholar
  7. 7.
    Chemli M, Haj Said A, Fave JL, Barthou C, Majdoub M. Synthesis and chemical modification of new luminescent substituted poly(p-phenylene) polymers. J Appl Polym Sci, 2012, 125(5): 3913–3919CrossRefGoogle Scholar
  8. 8.
    Senkovskyy V, Tkachov R, Beryozkina T, Komber H, Oertel U, Horecha M, Bocharova V, Stamm M, Gevorgyan SA, Krebs FC, Kiriy A. “Hairy” poly(3-hexylthiophene) particles prepared via surface-initiated kumada catalyst-transfer polycondensation. J Am Chem Soc, 2009, 131(45): 16445–16453CrossRefGoogle Scholar
  9. 9.
    Tam TL, Tan HHR, Ye W, Mhaisalkar SG, Grimsdale AC. One-pot synthesis of 4,8-dibromobenzo[1,2-d;4,5-d’]bistriazole and synthesis of its derivatives as new units for conjugated materials. Org Lett, 2011, 14(2): 532–535CrossRefGoogle Scholar
  10. 10.
    Van den Bergh K, De Winter J, Gerbaux P, Verbiest T, Koeckelberghs G. Ni-catalyzed polymerization of poly(3-alkoxythiophene)s. Macromol Chem Phys, 2011, 212(4): 328–335Google Scholar
  11. 11.
    Pei J, Wen S, Zhou Y, Dong Q, Liu Z, Zhang J, Tian W. A low band gap donor-acceptor copolymer containing fluorene and benzothiadiazole units: Synthesis and photovoltaic properties. New J Chem, 2011, 35(2): 385–393CrossRefGoogle Scholar
  12. 12.
    Cheng YJ, Luh TY. Synthesizing optoelectronic heteroaromatic conjugated polymers by cross-coupling reactions. J Organomet Chem, 2004, 689(24): 4137–4148CrossRefGoogle Scholar
  13. 13.
    Berrouard P, Najari A, Pron A, Gendron D, Morin P-O, Pouliot J-R, Veilleux J, Leclerc M. Synthesis of 5-alkyl[3,4-c]thienopyrrole-4,6-dione-based polymers by direct heteroarylation. Angew Chem Int Ed, 2012, 51(9): 2068–2071CrossRefGoogle Scholar
  14. 14.
    Hofmann S, Thomschke M, Lüssem B, Leo K. Top-emitting organic light-emitting diodes. Opt Express, 2011, 19(S6): A1250–A1264CrossRefGoogle Scholar
  15. 15.
    Chen S, Deng L, Xie J, Peng L, Xie L, Fan Q, Huang W. Recent developments in top-emitting organic light-emitting diodes. Adv Mater, 2010, 22(46): 5227–5239CrossRefGoogle Scholar
  16. 16.
    Zhong C, Duan C, Huang F, Wu H, Cao Y. Materials and devices toward fully solution processable organic light-emitting diodes. Chem Mater, 2010, 23(3): 326–340CrossRefGoogle Scholar
  17. 17.
    Zhang F, Wu D, Xu Y, Feng X. Thiophene-based conjugated oligomers for organic solar cells. J Mater Chem, 2011, 21(44): 17590–17600CrossRefGoogle Scholar
  18. 18.
    Xue J. Perspectives on organic photovoltaics. Polymer Rev, 2010, 50(4): 411–419CrossRefGoogle Scholar
  19. 19.
    Beaujuge PM, Reynolds JR. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem Rev, 2010, 110(1): 268–320CrossRefGoogle Scholar
  20. 20.
    Mortimer RJ, Dyer AL, Reynolds JR. Electrochromic organic and polymeric materials for display applications. Displays, 2006, 27(1): 2–18CrossRefGoogle Scholar
  21. 21.
    Haubner K, Jaehne E, Adler HJP, Koehler D, Loppacher C, Eng LM, Grenzer J, Herasimovich A, Scheiner S. Assembly, structure, and performance of an ultra-thin film organic field-effect transistor (OFET) based on substituted oligothiophenes. Org Electron, 2009, 75–94Google Scholar
  22. 22.
    Yumusak C, Sariciftci NS. Organic electrochemical light emitting field effect transistors. Appl Phys Lett, 2010, 97(3): 033302CrossRefGoogle Scholar
  23. 23.
    Aleshin AN, Shcherbakov IP, Petrov VN, Titkov AN. Solution-processed polyfluorene-zno nanoparticles ambipolar light-emitting field-effect transistor. Org Electron, 2011, 12(8): 1285–1292CrossRefGoogle Scholar
  24. 24.
    Okamoto K, Luscombe CK. Controlled polymerizations for the synthesis of semiconducting conjugated polymers. Polym Chem, 2011, 2(11): 2424–2434CrossRefGoogle Scholar
  25. 25.
    Starčević K, Boykin DW, Karminski-Zamola G. New amidino-benzimidazolyl thiophenes: Synthesis and photochemical synthesis. Heteroat Chem, 2003, 14(3): 218–222CrossRefGoogle Scholar
  26. 26.
    Younes AH, Zhang L, Clark RJ, Davidson MW, Zhu L. Electronic structural dependence of the photophysical properties of fluorescent heteroditopic ligands-implications in designing molecular fluorescent indicators. Org Biomol Chem, 2010, 8(23): 5431–5441CrossRefGoogle Scholar
  27. 27.
    Karacsony O, Deschamps JR, Trammell SA, Nita R, Knight DA. Synthesis of a 2,2′-bipyridyl functionalized oligovinylene-phenylene using heck and horner-wadsworth-emmons reactions and X-ray crystal structure of e-(4-(4-bromostyryl)phenyl)(methyl)sulfane. Molecules, 2012, 17: 5724–5732CrossRefGoogle Scholar
  28. 28.
    Patil PS, Haram NS, Pal RR, Periasamy N, Wadgaonkar PP, Salunkhe MM. Synthesis, spectroscopy, and electrochemical investigation of new conjugated polymers containing thiophene and 1,3,4-thiadiazole in the main chain. J Appl Polym Sci, 2012, 125(3): 1882–1889CrossRefGoogle Scholar
  29. 29.
    Jenekhe SA, Yang CJ, Vanherzeele H, Meth JS. Cubic nonlinear optics of polymer thin films. Effects of structure and dispersion on the nonlinear optical properties of aromatic schiff base polymers. Chem Mater, 1991, 3(6): 985–987CrossRefGoogle Scholar
  30. 30.
    Schab-Balcerzak E, Grucela-Zajac M, Krompiec M, Niestroj A, Janeczek H. New low band gap compounds comprised of naphthalene diimide and imine units. Synth Met, 2012, 162(5–6): 543–553CrossRefGoogle Scholar
  31. 31.
    Bolduc A, Dufresne S, Skene WG. Chemical doping of edot azomethine derivatives: Insight into the oxidative and hydrolytic stability. J Mater Chem, 2012, 22(11): 5053–5064CrossRefGoogle Scholar
  32. 32.
    Jursic BS. Suitability of furan, pyrrole and thiophene as dienes for diels-alder reactions viewed through their stability and reaction barriers for reactions with acetylene, ethylene and cyclopropene. An am1 semiempirical and b3lyp hybrid density functional theory study. Theochem, 1998, 454(2–3): 105–116CrossRefGoogle Scholar
  33. 33.
    Bourgeaux M, Skene WG. Photophysics and electrochemistry of conjugated oligothiophenes prepared by using azomethine connections. J Org Chem, 2007, 72(23): 8882–8892CrossRefGoogle Scholar
  34. 34.
    Yang CJ, Jenekhe SA. Conjugated aromatic poly(azomethines). 1. Characterization of structure, electronic spectra, and processing of thin films from soluble complexes. Chem Mater, 1991, 3(5): 878–887CrossRefGoogle Scholar
  35. 35.
    da Silva CM, da Silva DL, Martins CVB, de Resende MA, Dias ES, Magalhães TFF, Rodrigues LP, Sabino AA, Alves RB, de Fátima Â. Synthesis of aryl aldimines and their activity against fungi of clinical interest. Chem Biol Drug Des, 2011, 78(5): 810–815CrossRefGoogle Scholar
  36. 36.
    Matharu BK, Sharma JR, Manrao MR. Aldimines: Synthesis and effect of molecule dimension on antifungal potential. J Indian Counc Chem, 2006, 23: 47–50Google Scholar
  37. 37.
    Rani N, Sharma JR, Manrao MR. Synthesis and comparative fungitoxicity of benzalbenzylamines and benzalanilines. Pestic Res J, 2006, 18: 129–132Google Scholar
  38. 38.
    Niazi S, Javali C, Paramesh M, Shivaraja S. Study of influence of linkers and substitutions on antimicrobial activity of some schiff bases. Int J Pharm Pharm Sci, 2010, 2: 108–112Google Scholar
  39. 39.
    Hania MM. Synthesis of some imines and investigation of their biological activity. E-J Chem, 2009, 6: 629–632CrossRefGoogle Scholar
  40. 40.
    Ozkay Y, Incesu Z, Isikdag I, Yesilkaya M. Antiproliferative effects of some n-benzylideneanilines. Cell Biochem Funct, 2008, 26: 102–106CrossRefGoogle Scholar
  41. 41.
    Han SY, Inoue H, Terada T, Kamoda S, Saburi Y, Sekimata K, Saito T, Kobayashi M, Shinozaki K, Yoshida S, Asami T. N-benzylideneaniline and N-benzylaniline are potent inhibitors of lignostilbene-α,β-dioxygenase, a key enzyme in oxidative cleavage of the central double bond of lignostilbene. J Enzyme Inhib Med Chem, 2003, 18: 279–283CrossRefGoogle Scholar
  42. 42.
    Dronia H, Gruss U, Gaegele G, Friedrich T, Weiss H. Structure-activity analysis of fluorinated 1-n-arylamino-1-arylmethane-phosphonic acid esters as inhibitors of the nadh:Ubiquinone oxidoreductase (complex i). J Comput-Aided Mol Des, 1996, 10: 100–106CrossRefGoogle Scholar
  43. 43.
    Pasayat S, Dash SP, Saswati, Majhi PK, Patil YP, Nethaji M, Dash HR, Das S, Dinda R. Mixed-ligand aroylhydrazone complexes of molybdenum: Synthesis, structure and biological activity. Polyhedron, 2012, 38(1): 198–204CrossRefGoogle Scholar
  44. 44.
    Patel RN, Singh A, Shukla KK, Sondhiya VP, Patel DK, Singh Y, Pandey R. Design, synthesis, and characterization of a series of biologically active copper(II) schiff-base coordination compounds. J Coord Chem, 2012, 65: 1381–1397CrossRefGoogle Scholar
  45. 45.
    Kerneghan PA, Halperin SD, Bryce DL, Maly KE. Postsynthetic modification of an imine-based microporous organic network. Can J Chem, 2011, 89(5): 577–582, S577/571-S577/516CrossRefGoogle Scholar
  46. 46.
    Uribe-Romo FJ, Doonan CJ, Furukawa H, Oisaki K, Yaghi OM. Crystalline covalent organic frameworks with hydrazone linkages. J Am Chem Soc, 2011, 133(30): 11478–11481CrossRefGoogle Scholar
  47. 47.
    Pandey P, Katsoulidis AP, Eryazici I, Wu Y, Kanatzidis MG, Nguyen ST. Imine-linked microporous polymer organic frameworks. Chem Mater, 2010, 22(17): 4974–4979CrossRefGoogle Scholar
  48. 48.
    Uribe-Romo FJ, Hunt JR, Furukawa H, Klöck C, O’Keeffe M, Yaghi OM. A crystalline imine-linked 3-d porous covalent organic framework. J Am Chem Soc, 2009, 131(13): 4570–4571CrossRefGoogle Scholar
  49. 49.
    Pattakaran RLR, Burkanudeen AR. Synthesis and characterization of epoxy-containing schiff-base and phenylthiourea groupes for improved thermal conductivity. Polym-Plast Technol, 2012, 51: 140–145CrossRefGoogle Scholar
  50. 50.
    Zhang XH, Huang LH, Chen S, Qi GR. Improvement of thermal properties and flame retardancy of epoxy-amine thermosets by introducing bisphenol containing azomethine moiety. Express Polym Lett, 2007, 1(5): 326–332CrossRefGoogle Scholar
  51. 51.
    Ayesha Kausar SZ, Ahmad Z, Muhammad IS. Novel processable and heat resistant poly(phenylthiourea azomethine imide)s: Synthesis and characterization. Polym Degrad Stab, 2010, 95: 1826–1833CrossRefGoogle Scholar
  52. 52.
    Bourque AN, Dufresne S, Skene WG. Thiophene-phenyl azomethines with varying rotational barriers-model compounds for examining imine fluorescence deactivation. J Phys Chem C, 2009, 113(45): 19677–19685CrossRefGoogle Scholar
  53. 53.
    Dong Y, Bolduc A, McGregor N, Skene WG. Push-pull aminobithiophenes-highly fluorescent stable fluorophores. Org Lett, 2011, 13(7): 1844–1847CrossRefGoogle Scholar
  54. 54.
    Dufresne S, Perez Guarin SA, Bolduc A, Bourque AN, Skene WG. Conjugated fluorene-thiophenes prepared from azomethine connections part i. The effect of electronic and aryl groups on the spectroscopic and electrochemical properties. Photochem Photobiol Sci, 2009, 8(6): 796–804CrossRefGoogle Scholar
  55. 55.
    Knipping É, Roche IU, Dufresne S, McGregor N, Skene WG. Selective fluorescence turn-on of a prefluorescent azomethine with Zn2+. Tetrahedron Lett, 2011, 52(34): 4385–4387CrossRefGoogle Scholar
  56. 56.
    Farcas A, Jarroux N, Ghosh I, Guégan P, Nau WM, Harabagiu V. Polyrotaxanes of pyrene-triazole conjugated azomethine and α-cyclodextrin with high fluorescence properties. Macromol Chem Phys, 2009, 210(17): 1440–1449CrossRefGoogle Scholar
  57. 57.
    Sibel Derinkuyu KE, Oter O, Ergun Y. Ph-driver fluorescent switch behavior of azomethine dyes in solid matrix materials. Spectrosc Lett, 2010, 43: 500–512CrossRefGoogle Scholar
  58. 58.
    Liu JL, Xu S, Yan B. Photoactive hybrids with the functionalized schiff-base derivatives covalently bonded inorganic silica network: Sol-gel synthesis, characterization and photoluminescence. Colloids Surf A, 2011, 373(1–3): 116–123CrossRefGoogle Scholar
  59. 59.
    Sek D, Grabiec E, Janeczek H, Jarzabek B, Kaczmarczyk B, Domanski M, Iwan A. Structure-properties relationship of linear and star-shaped imines with triphenylamine moieties as hole-transporting materials. Opt Mater, 2010, 32(11): 1514–1525CrossRefGoogle Scholar
  60. 60.
    Yen HJ, Liou GS. Novel blue and red electrochromic poly(azomethine ether)s based on electroactive triphenylamine moieties. Org Electron, 2010, 11(2): 299–310CrossRefGoogle Scholar
  61. 61.
    Is OD, Koyuncu FB, Koyuncu S, Ozdemir E. A new imine coupled pyrrole-carbazole-pyrrole polymer: Electro-optical properties and electrochromism. Polymer, 2010, 51(8): 1663–1669CrossRefGoogle Scholar
  62. 62.
    Gao Z, Yu Y, Xu Y, Li S. Synthesis and characterization of a liquid crystalline epoxy containing azomethine mesogen for modification of epoxy resin. J Appl PolymSci, 2007, 105(4): 1861–1868CrossRefGoogle Scholar
  63. 63.
    Mallikharjuna Rao Darla SV. Synthesis and characterisation of azomethine class thermotropic liquid crystals and their application in non-linear optics. Liq Cryst, 2012, 39(1): 63–70CrossRefGoogle Scholar
  64. 64.
    Iwan A, Bilski P, Janeczek H, Jarzabek B, Domanski M, Rannou P, Sikora A, Pociecha D, Kaczmarczyk B. Thermal, optical, electrical and structural study of new symmetrical azomethine based on poly(1,4-butanediol)bis(4-aminobenzoate). J Mol Struct, 2010, 963(2–3): 175–182CrossRefGoogle Scholar
  65. 65.
    Iwan A, Palewicz M, Sikora A, Chmielowiec J, Hreniak A, Pasciak G, Bilski P. Aliphatic-aromatic poly(azomethine)s with ester groups as thermotropic materials for opto(electronic) applications. Synth Met, 2010, 160(17–18): 1856–1867CrossRefGoogle Scholar
  66. 66.
    Hindson JC, Ulgut B, Friend RH, Greenham NC, Norder B, Kotlewski A, Dingemans TJ. All-aromatic liquid crystal triphenylamine-based poly(azomethine)s as hole transport materials for opto-electronic applications. J Mater Chem, 2010, 20(5): 937–944CrossRefGoogle Scholar
  67. 67.
    Bürgi HB, Dunitz JD. Crystal and molecular structures of benzylideneaniline, benzylideneaniline-p-carboxylic acid and p-methylbenzylidene-p-nitroaniline. Helv Chim Acta, 1970, 53(7): 1747–1764CrossRefGoogle Scholar
  68. 68.
    Hoekstra A, Meertens P, Vos A. Refinement of the crystal structure of trans-stilbene (TSB). The molecular structure in the crystalline and gaseous phases. Acta Crystallogr, Sect B: Struct Sci, 1975, 31(12): 2813–2817CrossRefGoogle Scholar
  69. 69.
    Bartholomew GP, Bu X, Bazan GC. Preferential cocrystallization among distyrylbenzene derivatives. Chem Mater, 2000, 12: 2311–2318CrossRefGoogle Scholar
  70. 70.
    Zhu S, Zhu S, Jin G, Li Z. Strong phenyl-perfluorophenyl π-π stacking and C-H…F-C hydrogen bonding interactions in the crystals of the corresponding aromatic aldimines. Tetrahedron Lett, 2005, 46(15): 2713–2716CrossRefGoogle Scholar
  71. 71.
    Mallet C, Allain M, Leriche P, Frere P. Competition between π-π or furan-perfluorophenyl stacking interactions in conjugated compounds prepared from azomethine connections. CrystEngComm, 2011, 13(19): 5833–5840CrossRefGoogle Scholar
  72. 72.
    Roncali J. Conjugated poly(thiophenes): Synthesis, functionalization, and applications. Chem Rev, 1992, 92(4): 711–738CrossRefGoogle Scholar
  73. 73.
    McCullough RD, Tristram-Nagle S, Williams SP, Lowe RD, Jayaraman M. Self-orienting head-to-tail poly(3-alkylthiophenes): New insights on structure-property relationships in conducting polymers. J Am Chem Soc, 1993, 115(11): 4910–4911CrossRefGoogle Scholar
  74. 74.
    Facchetti A. Electroactive oligothiophenes and polythiophenes for organic field effect transistors. Handbook of Thiophene-Based Materials: Applications in Organic Electronics and Photonics, 2009, 1: 595–646CrossRefGoogle Scholar
  75. 75.
    Lu K, Liu Y. Polythiophenes: Important conjugated semiconducting polymers for organic field-effect transistors. Curr Org Chem, 2010, 14: 2017–2033CrossRefGoogle Scholar
  76. 76.
    Gigli G, Barbarella G, Favaretto L, Cacialli F, Cingolani R. High-efficiency oligothiopene-based light-emitting diodes. Appl Phys Lett, 1999, 75: 439–441CrossRefGoogle Scholar
  77. 77.
    Amb CM, Dyer AL, Reynolds JR. Navigating the color palette of solution-processable electrochromic polymers. Chem Mater, 2011, 23: 397–415CrossRefGoogle Scholar
  78. 78.
    Gunbas G, Toppare L. Electrochromic conjugated polyheterocycles and derivatives-highlights from the last decade towards realization of long lived aspirations. Chem Commun, 2012, 48: 1083–1101CrossRefGoogle Scholar
  79. 79.
    Bench R, Duflos J, Dupas G, Bourguignon J, Queguiner G. Synthesis and study of chiral nadh models in the thieno[2,3-b]pyridine series. J Heterocycl Chem, 1989, 26(6): 1595–1600CrossRefGoogle Scholar
  80. 80.
    Chirakadze GG, Geliashvili EE, Gagolishvili MS. Synthesis and properties of thiophene containing azo dyes and pigments. Izv Akad Nauk Gruz, Ser Khim, 1999, 25: 203–209Google Scholar
  81. 81.
    Ivanova VN. Nitrogenous compounds of phenylated derivatives of thiophene. I. Zh Obshch Khim, 1958, 28: 1232–1238Google Scholar
  82. 82.
    Puterova Z, Krutošíková A, Végh D. Gewald reaction: Synthesis, properties and applications of substituted 2-aminothiophenes. ARKIVOC, 2010, i: 209–246Google Scholar
  83. 83.
    Buchstaller H-P, Siebert CD, Lyssy RH, Frank I, Duran A, Gottschlich R, Noe CR. Synthesis of novel 2-aminothiophene-3-carboxylates by variations of the gewald reaction. Monats Chem, 2001, 132(2): 279–293CrossRefGoogle Scholar
  84. 84.
    Sabnis RW, Rangnekar DW, Sonawane ND. 2-Aminothiophenes by the gewald reaction. J Heterocycl Chem, 1999, 36(2): 333–345CrossRefGoogle Scholar
  85. 85.
    Bourgeaux M, Vomscheid S, Skene WG. Optimized synthesis and simple purification of 2,5-diaminothiophene-3,4-dicarboxylic acid diethyl ester. Synth Commun, 2007, 37: 3551–3558CrossRefGoogle Scholar
  86. 86.
    Gewald K. Heterocycles from ch-acidic nitriles. Vii. 2-Aminothiophene from a-oxo mercaptans and methylene-active nitriles. Chem Ber, 1965, 98(11): 3571–3577CrossRefGoogle Scholar
  87. 87.
    Gewald K. Methods for the synthesis of 2-aminothiophenes and their reactions (review). Chem Hetero Comp, 1976, 12(10): 1077–1090CrossRefGoogle Scholar
  88. 88.
    Gewald K, Gruner M, Hain U, Süptitz G. Zur ringumwandlung von 2-amino-thiophen-3-carbonsäureestern: Pyridon-und pyridazinonderivate. Monats Chem, 1988, 119(8–9): 985–992Google Scholar
  89. 89.
    Gewald VK, Kleinert M, Thiele B, Hentschel M. Zur basenkatalysierten reaktion von methylenaktiven nitrilen mit schwefel. J Prak Chem, 1972, 314(2): 303–314CrossRefGoogle Scholar
  90. 90.
    Angell RM, Atkinson FL, Brown MJ, Chuang TT, Christopher JA, Cichy-Knight M, Dunn AK, Hightower KE, Malkakorpi S, Musgrave JR, Neu M, Rowland P, Shea RL, Smith JL, Somers DO, Thomas SA, Thompson G, Wang R. N-(3-cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)amides as potent, selective, inhibitors of jnk2 and jnk3. Bioorg Med Chem Lett, 2007, 17: 1296–1301CrossRefGoogle Scholar
  91. 91.
    Bowers S, Truong AP, Neitz RJ, Neitzel M, Probst GD, Hom RK, Peterson B, Galemmo RA, Jr., Konradi AW, Sham HL, Toth G, Pan H, Yao N, Artis DR, Brigham EF, Quinn KP, Sauer JM, Powell K, Ruslim L, Ren Z, Bard F, Yednock TA, Griswold-Prenner I. Design and synthesis of a novel, orally active, brain penetrant, tri-substituted thiophene based jnk inhibitor. Bioorg Med Chem Lett, 2011, 21: 1838–1843CrossRefGoogle Scholar
  92. 92.
    De SK, Barile E, Chen V, Stebbins JL, Cellitti JF, Machleidt T, Carlson CB, Yang L, Dahl R, Pellecchia M. Design, synthesis, and structure-activity relationship studies of thiophene-3-carboxamide derivatives as dual inhibitors of the c-jun n-terminal kinase. Bioorg Med Chem, 2011, 19: 2582–2588CrossRefGoogle Scholar
  93. 93.
    Grembecka J, He S, Shi A, Purohit T, Muntean AG, Sorenson RJ, Showalter HD, Murai MJ, Belcher AM, Hartley T, Hess JL, Cierpicki T. Menin-mll inhibitors reverse oncogenic activity of mll fusion proteins in leukemia. Nat Chem Biol, 2012, 8: 277–284CrossRefGoogle Scholar
  94. 94.
    Aurelio L, Christopoulos A, Flynn BL, Scammells PJ, Sexton PM, Valant C. The synthesis and biological evaluation of 2-amino-4,5,6,7,8,9-hexahydrocycloocta[b]thiophenes as allosteric modulators of the a1 adenosine receptor. Bioorg Med Chem Lett, 2011, 21: 3704–3707CrossRefGoogle Scholar
  95. 95.
    Kumar V, Madan AK. Prediction of the agonist allosteric enhancer activity of thiophenes with respect to human a1 adenosine receptors using topological indices. Pharm Chem J, 2007, 41: 140–145CrossRefGoogle Scholar
  96. 96.
    Nikolakopoulos G, Figler H, Linden J, Scammells PJ. 2-Aminothiophene-3-carboxylates and carboxamides as adenosine a1 receptor allosteric enhancers. Bioorg Med Chem, 2006, 14: 2358–2365CrossRefGoogle Scholar
  97. 97.
    Gaber HM, Bagley MC, Sherif SM. Antimicrobial investigations on synthetic p-tolylazo derivatives of thienopyrimidinone based on an ortho-functionalized thiophene nucleus. Eur J Chem, 2010, 1: 115–123CrossRefGoogle Scholar
  98. 98.
    Panchamukhi SI, Mulla JAS, Shetty NS, Khazi MIA, Khan AY, Kalashetti MB, Khazi IAM. Benzothieno[3,2-e][1,2,4]triazolo [4,3-c]pyrimidines: Synthesis, characterization, antimicrobial activity, and incorporation into solid lipid nanoparticles. Arch Pharm (Weinheim, Ger), 2011, 344: 358–365CrossRefGoogle Scholar
  99. 99.
    Shams HZ, Mohareb RM, Helal MH, Mahmoud AE-S. Design and synthesis of novel antimicrobial acyclic and heterocyclic dyes and their precursors for dyeing and/or textile finishing based on 2-n-acylamino-4,5,6,7-tetrahydro-benzo[b]thiophene systems. Mole-cules, 2011, 16: 6271–6305Google Scholar
  100. 100.
    Hallas G, Choi JH. Synthesis and spectral properties of azo dyes derived from 2-aminothiophenes and 2-aminothiazoles. Dyes Pigm, 1999, 42(3): 249–265CrossRefGoogle Scholar
  101. 101.
    Hallas G, Choi JH. Synthesis and properties of novel aziridinyl azo dyes from 2-aminothiophenes-Part 1: Synthesis and spectral properties. Dyes Pigm, 1999, 40(2–3): 99–117CrossRefGoogle Scholar
  102. 102.
    Hallas G, Choi JH. Synthesis and properties of novel aziridinyl azo dyes from 2-aminothiophenes-Part 2: Application of some disperse dyes to polyester fibres. Dyes Pigm, 1999, 40(2–3): 119–129CrossRefGoogle Scholar
  103. 103.
    Hallas G, Towns AD. Dyes derived from aminothiophenes. Part 1: Synthesis of some heterocyclic disperse dyes using the gewald reaction. Dyes Pigm, 1996, 32(3): 135–149CrossRefGoogle Scholar
  104. 104.
    Hallas G, Towns AD. A comparison of the properties of some 2-aminothiophene-derived disperse dyes. Dyes Pigm, 1996, 31(4): 273–289CrossRefGoogle Scholar
  105. 105.
    Hallas G, Towns AD. Dyes derived from aminothiophenes. Part 4: Synthesis of some nitro-substituted thiophene-based azo disperse dyes. Dyes Pigm, 1997, 33(4): 319–336Google Scholar
  106. 106.
    Hallas G, Towns AD. Dyes derived from aminothiophenes-Part 2. Spectroscepic properties of some disperse dyes derived from 2-aminothiophenes. Dyes Pigm, 1997, 33(3): 205–213CrossRefGoogle Scholar
  107. 107.
    Hallas G, Towns AD. Dyes derived from aminothiophenes. Part 6: Application of some nitro-substituted thiophene-based azo disperse dyes to hydrophobic fibres. Dyes Pigm, 1997, 35(1): 45–55CrossRefGoogle Scholar
  108. 108.
    Hallas G, Towns AD. Dyes derived from aminothiophenes-Part 3. Application of some disperse dyes derived from 2-aminothiophenes to hydrophobic fibres. Dyes Pigm, 1997, 33(3): 215–228CrossRefGoogle Scholar
  109. 109.
    El-Shekeil A, Abu-Bakr AO. Dc electrical conductivity of the direct electrochemically synthesized polythiophene metal complexes. J Macromol Sci Part A: Pure Appl Chem, 2011, 48: 233–240CrossRefGoogle Scholar
  110. 110.
    El-Shekeil A, Al-Khader M, Abu-Bakr AO. Synthesis, characterization and dc electrical conductivity of some oligmer mixed metal complexes. Synth Met, 2004, 143(2): 147–152CrossRefGoogle Scholar
  111. 111.
    El-Dossoki FI. Electric conductance and semi-empirical studies on two thiophene derivatives/metal cation complexation. J Mol Liq, 2008, 142: 53–56CrossRefGoogle Scholar
  112. 112.
    Skene WG, Dufresne S, Trefz T, Simard M. (e)-Diethyl 2-amino-5-(2-thienylmethyleneamino)thiophene-3,4-dicarboxylate. Acta Crystallogr, Sect E: Struct Rep Online, 2006, 62(6): o2382–o2384CrossRefGoogle Scholar
  113. 113.
    Dufresne S, Bourgeaux M, Skene WG. Diethyl 2,5-bis((e)-thiophen-2-ylmethyleneamino)thiophene-3,4-dicarboxylate triad. Acta Crystallogr, Sect E: Struct Rep Online, 2006, 62(12): o5602–o5604CrossRefGoogle Scholar
  114. 114.
    Wong BM, Cordaro JG. Electronic properties of vinylene-linked heterocyclic conducting polymers: Predictive design and rational guidance from dft calculations. J Phys Chem C, 2011, 115(37): 18333–18341CrossRefGoogle Scholar
  115. 115.
    Qing F, Sun Y, Wang X, Li N, Li Y, Li X, Wang H. A novel poly(thienylenevinylene) derivative for application in polymer solar cells. Polym Chem, 2011, 2(9): 2102–2106CrossRefGoogle Scholar
  116. 116.
    Gergely J, Morgan JB, Overman LE. Stereocontrolled synthesis of functionalized cis-cyclopentapyrazolidines by 1,3-dipolar cycloaddition reactions of azomethine imines. J Org Chem, 2006, 71: 9144–9152CrossRefGoogle Scholar
  117. 117.
    Bourgeaux M, Skene WG. Photophysics and electrochemistry of conjugated oligothiophenes prepared by using azomethine connections. J Org Chem, 2007, 72(23): 8882–8892CrossRefGoogle Scholar
  118. 118.
    Guarìn SAP, Bourgeaux M, Dufresne S, Skene WG. Photophysical, crystallographic, and electrochemical characterization of symmetric and unsymmetric self-assembled conjugated thiopheno azomethines. J Org Chem, 2007, 72(7): 2631–2643CrossRefGoogle Scholar
  119. 119.
    Mielke J, Leyssner F, Koch M, Meyer S, Luo Y, Selvanathan S, Haag R, Tegeder P, Grill L. Imine derivatives on Au(111): Evidence for “inverted” thermal isomerization. ACS Nano, 2011, 5(3): 2090–2097CrossRefGoogle Scholar
  120. 120.
    Luo Y, Utecht M, Dokić J, Korchak S, Vieth H-M, Haag R, Saalfrank P. Cis-trans isomerisation of substituted aromatic imines: A comparative experimental and theoretical study. ChemPhysChem, 2011, 2311–2321Google Scholar
  121. 121.
    Traven’ V, Ivanov I, Panov A, Safronova O, Chibisova T. Solvent-induced E/Z (C=N)-isomerization of imines of some hydroxy-substituted formylcoumarins. Rus Chem Bull, 2008, 57(9): 1989–1995CrossRefGoogle Scholar
  122. 122.
    Selli E. Photochemistry of n-benzylideneanilinium cations in concentrated sulfuric acid solutions. J Photochem Photobiol A, 1996, 101(2–3): 185–188CrossRefGoogle Scholar
  123. 123.
    Geissler G, Fust W, Krüger B, Tomaschewski G. Azomethinimine. Vii. Photochemisches und thermisches verhalten azarylsubstituierter pyrazolidon-(3)-azomethinimine. J Prak Chem, 1983, 325(2): 205–210CrossRefGoogle Scholar
  124. 124.
    Russegger P. Photoisomerization about carbon-nitrogen double bonds. I. Kinetic and potential energy for ground and excited states of methylenimine. Chem Phys, 1978, 34(3): 329–339CrossRefGoogle Scholar
  125. 125.
    Traven VF, Miroshnikov VS, Pavlov AS, Ivanov IV, Panov AV, Chibisova TyA. Unusual e/z-isomerization of 7-hydroxy-4-methyl-8-[(9h-fluoren-2-ylimino)methyl]-2h-1-benzopyran-2-one in acetonitrile. Mendeleev Commun, 17(2): 88–89Google Scholar
  126. 126.
    Dufresne S, Skene WG. Optoelectronic property tailoring of conjugated heterocyclic azomethines-the effect of pyrrole, thiophene and furans. J Phys Org Chem, 2011, 211–221Google Scholar
  127. 127.
    Roncali J. Conjugated poly(thiophenes): Synthesis, functionalization, and applications. Chem Rev, 1992, 92(4): 711–738CrossRefGoogle Scholar
  128. 128.
    Lee CK, Yu JS, Lee HJ. Determination of aromaticity indices of thiophene and furan by nuclear magnetic resonance spectroscopic analysis of their phenyl esters. J Heterocyclic Chem, 2002, 39(6): 1207–1217CrossRefGoogle Scholar
  129. 129.
    Dufresne S, Bolduc A, Skene WG. Towards materials with reversible oxidation and tuneable colours using heterocyclic conjugated azomethines. J Mater Chem, 2010, 20(23): 4861–4866CrossRefGoogle Scholar
  130. 130.
    Bolduc A, Dufresne S, Skene WG. Edot-containing azomethine: An easily prepared electrochromically active material with tuneable colours. J Mater Chem, 2010, 20(23): 4820–4826CrossRefGoogle Scholar
  131. 131.
    Dong Y, Navarathne D, Bolduc A, McGregor N, Skene WG. A,α′-n-boc-substituted bi- and terthiophenes: Fluorescent precursors for functional materials. J Org Chem, 2012, 77(22): 5429–5433CrossRefGoogle Scholar
  132. 132.
    Lakowicz JR. Principles of Fluorescence Spectroscopy. New York: Springer, 2006CrossRefGoogle Scholar
  133. 133.
    Bourgeaux M, Guarin SAP, Skene WG. Photophysical, crystallographic, and electrochemical characterization of novel conjugated thiopheno azomethines. J Mater Chem, 2007, 17(10): 972–979CrossRefGoogle Scholar
  134. 134.
    Luo Y, Korchak S, Vieth HM, Haag R. Effective reversible photoinduced switching of self-assembled monolayers of functional imines on gold nanoparticles. Chem Phys Chem, 2011, 12(1): 132–135CrossRefGoogle Scholar
  135. 135.
    Bléger D, Ciesielski A, Samorì P, Hecht S. Photoswitching vertically oriented azobenzene self-assembled monolayers at the solid-liquid interface. Chem Eur J, 2010, 16(48): 14256–14260CrossRefGoogle Scholar
  136. 136.
    Bourque AN, Dufresne S, Skene WG. Conjugated fluorenes prepared from azomethines connections: The effect of alternating fluorenones and fluorenes on the spectroscopic and electrochemical properties. J Phys Chem C, 2009, 113(45): 19677–19685CrossRefGoogle Scholar
  137. 137.
    Dufresne S, Skalski T, Skene WG. Insights into the effect of ketylimine, aldimine, and vinylene group attachment and regiosubstitution on the fluorescence deactivation of fluorene. Can J Chem, 2011, 89(2): 173–180CrossRefGoogle Scholar
  138. 138.
    Dufresne S, Roche IU, Skalski T, Skene WG. Insights into the effect of the ketylimine group on the fluorescence deactivation of oligofluorenes. J Phys Chem C, 2010, 114(30): 13106–13112CrossRefGoogle Scholar
  139. 139.
    Dufresne S, Bourque AN, Skene WG. (e)-5-(2-Thienylmethyleneamino)quinolin-8-ol. Acta Crystallogr, Sect E: Struct Rep Online, 2008, 64(1): o316CrossRefGoogle Scholar
  140. 140.
    Skene WG, Dufresne S, Trefz T, Simard M. (e)-Diethyl 2-amino-5-(2-thienylmethyleneamino)thiophene-3,4-dicarboxylate. Acta Crystallogr, Sect E: Struct Rep Online, 2006, E62(6): o2382–o2384CrossRefGoogle Scholar
  141. 141.
    Dufresne S, Bourgeaux M, Skene WG. Diethyl 2,5-bis[(e)-thiophen-2-ylmethyleneamino]thiophene-3,4-dicarboxylate. Acta Crystallogr, Sect E: Struct Rep Online, 2006, 62(12): o5602–o5604CrossRefGoogle Scholar
  142. 142.
    Dufresne S, Skene WG. Diethyl 2,5-bis[(1e)-(1h-pyrrol-2-ylmethylidene)amino]thiophene-3,4-dicarboxylate. Acta Crystallogr, Sect E: Struct Rep Online, 2011, 67(9): o2302CrossRefGoogle Scholar
  143. 143.
    Dufresne S, Skene WG. Diethyl 2-amino-5-[(e)-(1-methyl-1h-pyrrol-2-yl)methylideneamino]thiophene-3,4-dicarboxylate. Acta Crystallogr, Sect E: Struct Rep Online, 2010, 66(12): o3221CrossRefGoogle Scholar
  144. 144.
    Dufresne S, Skene WG. Diethyl 2-amino-5-[(e)-(furan-2-ylmethylidene)amino]thiophene-3,4-dicarboxylate. Acta Crystallogr, Sect E: Struct Rep Online, 2010, 66(11): o3027CrossRefGoogle Scholar
  145. 145.
    Dufresne S, Skene WG. Diethyl 2-[(1-methyl-1h-pyrrol-2-yl)methyleneamino]-5-(2-thienylmethyleneamino)thiophene-3,4-dica rboxylate. Acta Crystallogr, Sect E: Struct Rep Online, 2008, 64(5): o782CrossRefGoogle Scholar
  146. 146.
    Dufresne S, Skene WG. Diethyl 2,5-bis[(e)-2-furylmethyleneamino] thiophene-3,4-dicarboxylate. Acta Crystallogr, Sect E: Struct Rep Online, 2008, 64(4): o710CrossRefGoogle Scholar
  147. 147.
    Dufresne S, Bolduc A, Skene WG. Diethyl 2,5-bis[(2,3-dihydroth-ieno[3,4-b][1,4]dioxin-5-yl)methylideneamino]thiophene-3,4-dicarbo xylate acetone monosolvate. Acta Crystallogr, Sect E: Struct Rep Online, 2011, 67(12): o3138CrossRefGoogle Scholar
  148. 148.
    Bourgeaux M, Vomsheid S, Skene WG. Hydrogen-bonded network of diethyl 2,5-diaminothiophene-3,4-dicarboxylate. Acta Crystallogr, Sect E: Struct Rep Online, 2006, 62(12): o5529–o5531CrossRefGoogle Scholar
  149. 149.
    Ruban G, Zobel D. Crystal structure of trans-1,2-di-2-thienylethene. Acta Crystallogr, Sect B, 1975, B31: 2632–2634CrossRefGoogle Scholar
  150. 150.
    Dogan F, Kaya I, Bilici A. Azomethine-based phenol polymer: Synthesis, characterization and thermal study. Synth Met, 2011, 161(1–2): 79–86CrossRefGoogle Scholar
  151. 151.
    El-Shekeil AG, Al-Yusufy FA, Saknidy S. Dc conductivity of some polyazomethines. Polym Int, 1997, 42(1): 39–44CrossRefGoogle Scholar
  152. 152.
    Iwan A, Sek D. Processible polyazomethines and polyketanils: From aerospace to light-emitting diodes and other advanced applications. Prog Polym Sci, 2008, 33(3): 289–345CrossRefGoogle Scholar
  153. 153.
    Bourgeaux M, Skene WG. A highly conjugated p- and n-type polythiophenoazomethine: Synthesis, spectroscopic, and electrochemical investigation. Macromolecules, 2007, 40(6): 1792–1795CrossRefGoogle Scholar
  154. 154.
    Hall HKJ, Padias AB, Williams PA, Gosau JM, Boone HW, Park DK. Novel polyaromatic quinone imines. Macromolecules, 1995, 28(1): 1–8CrossRefGoogle Scholar
  155. 155.
    Bourgeaux M, Skene WG. A highly conjugated p- and n-type polythiophenoazomethine: Synthesis, spectroscopic, and electrochemical investigation. Macromolecules, 2007, 40(6): 1792–1795CrossRefGoogle Scholar
  156. 156.
    Giuseppone N. Toward self-constructing materials: A systems chemistry approach. Acc Chem Res, 2012, DOI: 10.1021/ar2002655Google Scholar
  157. 157.
    Rue NM, Sun J, Warmuth R. Polyimine container molecules and nanocapsules. Israel J Chem, 2011, 51(7): 743–768CrossRefGoogle Scholar
  158. 158.
    Ciesielski A, Samori P. Supramolecular assembly/reassembly processes: Molecular motors and dynamers operating at surfaces. Nanoscale, 2011, 3(4): 1397–1410CrossRefGoogle Scholar
  159. 159.
    Lehn J. Dynamers: Dynamic molecular and supramolecular polymers. Aust J Chem, 2010, 63(4): 611–623CrossRefGoogle Scholar
  160. 160.
    Meyer CD, Joiner CS, Stoddart JF. Template-directed synthesis employing reversible imine bond formation. Chem Soc Rev, 2007, 36(11): 1705–1723CrossRefGoogle Scholar
  161. 161.
    Barik S, Bishop S, Skene WG. Spectroelectrochemical and electrochemical investigation of a highly conjugated all-thiophene polyazomethine. Mater Chem Phys, 2011, 129(1–2): 529–533CrossRefGoogle Scholar
  162. 162.
    Ryan B, McCann G. Novel sub-ceiling temperature rapid depolymerization-repolymerization reactions of cyanoacrylate polymers. Macromol Rapid Commun, 1996, 17: 217–227CrossRefGoogle Scholar
  163. 163.
    Wong BM, Cordaro JG. Electronic properties of vinylene-linked heterocyclic conducting polymers: Predictive design and rational guidance from dft calculations. J Phys Chem C, 2011, 115(37): 18333–18341CrossRefGoogle Scholar
  164. 164.
    Bentkowska H. The effect of factors breaking the siloxane bond on the repolymerization course of siloxanes. I. Effect of hydrogen chloride on cyclic and linear poly(diethylsiloxane). Rocz Chem, 1963, 37: 717–721Google Scholar
  165. 165.
    Barik S, Skene WG. Selective chain-end postpolymerization reactions and property tuning of a highly conjugated and all-thiophene polyazomethine. Macromolecules, 2010, 43(24): 10435–10441CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andréanne Bolduc
    • 1
  • Charlotte Mallet
    • 1
  • W. G. Skene
    • 1
  1. 1.Laboratoire de Caractérisation Photophysique des Matériaux Conjugués, Département de ChimieUniversité de MontréalCentre-ville, MontrealCanada

Personalised recommendations