Science China Chemistry

, Volume 55, Issue 10, pp 2027–2035 | Cite as

Mechanistic aspects of oxidation of palladium with O2

Reviews Special Topic Physical Organic Chemistry in China

Abstract

Palladium-catalyzed aerobic transformation has been one of the most challenging topics within organometallics chemistry. Recently, the corresponding methodology has been developed rapidly, involving alcohol oxidation, alkene oxidation, oxidative coupling and so on, which stimulated considerable interests in mechanistic investigation of the oxidation of Pd with O2. This review summarizes most of the mechanistic studies on this topic during the past ten years. Moreover, the future of the mechanistic investigation for aerobic oxidation of Pd is also discussed.

Keywords

palladium O2 mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stahl SS. Palladium-catalyzed oxidation of organic chemicals with O2. Science, 2005, 309: 1824–1826CrossRefGoogle Scholar
  2. 2.
    Beller M, Centi G. Catalysis and sustainable development: The marriage for innovation. ChemSusChem, 2009, 2: 459–460CrossRefGoogle Scholar
  3. 3.
    Punniyamurthy T, Velusamy S, Iqbal J. Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem Rev, 2005, 105: 2329–2364CrossRefGoogle Scholar
  4. 4.
    Shi Z, Zhang C, Tang C, Jiao N. Recent advances in transition-metal catalyzed reactions using molecular oxygen as the oxidant. Chem Soc Rev, 2012, 41: 3381–3430CrossRefGoogle Scholar
  5. 5.
    Wendlandt AE, Suess AM, Stahl SS. Copper-catalyzed aerobic oxidative C-H functionalizations: Trends and mechanistic insights. Angew Chem Int Ed, 2011, 50: 11062–11087CrossRefGoogle Scholar
  6. 6.
    Zhou M, Crabtree R H. C-H oxidation by platinum group metal oxo or peroxo species. Chem Soc Rev, 2011, 40: 1875–1884CrossRefGoogle Scholar
  7. 7.
    Lipshutz BH, Siegmann K, Garcia E, Kayser F. Synthesis of unsymmetrical biaryls via kinetic higher order cyanocuprates: Scope, limitations, and spectroscopic insights. J Am Chem Soc, 1993, 115: 9276–9282CrossRefGoogle Scholar
  8. 8.
    Mizuno H, Sakurai H, Amaya T, Hirao T. Oxovanadium(V)-catalyzed oxidative biaryl synthesis from organoborate under O2. Chem Commun, 2006: 5042–5044Google Scholar
  9. 9.
    Chen M, Zheng X, Li W, He J, Lei A. Palladium-catalyzed aerobic oxidative cross-coupling reactions of terminal alkynes with alkylzinc reagents. J Am Chem Soc, 2010, 132: 4101–4103CrossRefGoogle Scholar
  10. 10.
    Wang D, Mei T, Yu J. Versatile Pd(II)-catalyzed C-H activation/aryl-aryl coupling of benzoic and phenyl acetic acids. J Am Chem Soc, 2008, 130: 17676–17677CrossRefGoogle Scholar
  11. 11.
    Shi Z, Li B, Wan X, Cheng J, Fang Z, Cao B, Qin C, Wang Y. Suzuki-Miyaura coupling reaction by Pd(II)-catalyzed aromatic C-H bond activation directed by an n-alkyl acetamino group. Angew Chem Int Ed, 2007, 46: 5554–5558CrossRefGoogle Scholar
  12. 12.
    Shi M, Qian H. NHC-Pd(II) complex-Cu(I) co-catalyzed homocoupling reaction of terminal alkynes. Appl Organomet Chem, 2006, 20: 771–774CrossRefGoogle Scholar
  13. 13.
    Zhou L, Zhan H, Liu H, Jiang H. An efficient and practical process for Pd/Cu co-catalyzedhomocoupling reaction of terminal alkynes using sodium percarbonate as a dual reagent in aqueous media. Chin J Chem, 2007, 25: 1413–1416CrossRefGoogle Scholar
  14. 14.
    Chen S, Wu W, Tsai F. Homocoupling reaction of terminal alkynes catalyzed by a reusable cationic 2,2[prime or minute]-bipyridyl palladium(II)/CuI system in water. Green Chem, 2009, 11: 269–274CrossRefGoogle Scholar
  15. 15.
    Yang F, Cui X, Li Y, Zhang J, Ren G, Wu Y. Cyclopalladated ferrocenylimines: Efficient catalysts for homocoupling and sonogashira reaction of terminal alkynes. Tetrahedron, 2007, 63: 1963–1969CrossRefGoogle Scholar
  16. 16.
    Burton H, Kozhevnikov I. Biphasic oxidation of arenes with oxygen catalyzed by a Pd(II)-heteropoly acid system: Oxidative coupling versus hydroxylation. J Mol Catal A: Chem, 2002, 185: 285–290CrossRefGoogle Scholar
  17. 17.
    Wang D, Li J, Li N, Gao T, Hou S, Chen B. An efficient approach to homocoupling of terminal alkynes: Solvent-free synthesis of 1,3-diynes using catalytic Cu(II) and base. Green Chem, 2010, 12: 45–48CrossRefGoogle Scholar
  18. 18.
    Shiotani A, Itatani H, Inagaki T. Selective coupling of dimethyl phthalate with palladium catalysts at atmospheric pressure. J Mol Catal, 1986, 34: 57–66CrossRefGoogle Scholar
  19. 19.
    Itatani H, Yoshimoto H. Palladium-catalyzed syntheses of aromatic coupling compounds. J Org Chem, 1973, 38: 76–79CrossRefGoogle Scholar
  20. 20.
    Yoshimoto H, Itatani H. Palladium-catalyzed competitive reaction of aromatic compounds. J Catal, 1973, 31: 8–12CrossRefGoogle Scholar
  21. 21.
    Yoshimoto H, Itatani H. Palladium-catalyzed coupling reaction of aromatic compounds. Bul. Chem Soc Jpn, 1973, 46: 2490–2492CrossRefGoogle Scholar
  22. 22.
    Fuchita Y, Taga M, Kawakami M, Kawachi F. Facile oxidative coupling of benzene by the palladium(II) acetate-dialkyl sulfide system. Bull Chem Soc Jpn, 1993, 66: 1294–1296CrossRefGoogle Scholar
  23. 23.
    Okamoto M, Yamaji T. A selective synthesis of biphenyl by the Pd(OAc)2/MoO2(acac)2/O2/AcOH catalyst system. Chem Lett, 2001: 212–213Google Scholar
  24. 24.
    Yokota T, Tani M, Sakaguchi S, Ishii Y. Direct coupling of benzene with olefin catalyzed by Pd(OAc)2 combined with heteropolyoxometalate under dioxygen. J Am Chem Soc, 2003, 125: 1476–1477CrossRefGoogle Scholar
  25. 25.
    Liang Z, Zhao J, Zhang Y. Palladium-catalyzed regioselective oxidative coupling of indoles and one-pot synthesis of acetoxylated biindolyls. J Org Chem, 2010, 75: 170–177CrossRefGoogle Scholar
  26. 26.
    Li B, Tian S, Fang Z, Shi Z. Multiple C-H activations to construct biologically active molecules in a process completely free of organohalogen and organometallic components. Angew Chem Int Ed, 2008, 47: 1115–1118CrossRefGoogle Scholar
  27. 27.
    Zhao Y, Jin L, Li P, Lei A. Palladium-catalyzed oxidative carbonylation of alkyl and aryl indium reagents with CO under mild conditions. J Am Chem Soc, 2008, 130: 9429–9433CrossRefGoogle Scholar
  28. 28.
    Liu Q, Li G, He J, Liu J, Li P, Lei A. Palladium-catalyzed aerobic oxidative carbonylation of arylboronate esters under mild conditions. Angew Chem Int Ed, 2010, 49: 3371–3374CrossRefGoogle Scholar
  29. 29.
    Liu Q, Li G, Yi H, Wu P, Liu J, Lei A. Pd-catalyzed direct and selective C-H functionalization: C3-acetoxylation of indoles. Chem Eur J., 2011, 17: 2353–2357Google Scholar
  30. 30.
    Zhang H, Liu D, Chen CY, Liu C, Lei AW. Palladium-catalyzed regioselective aerobic oxidative C-H/N-H carbonylation of heteroarenes under base-free conditions. Chem-Eur J, 2011, 17: 9581–9585CrossRefGoogle Scholar
  31. 31.
    Hossain KM, Kameyama T, Shibata T, Takagi K. Palladium-catalyzed synthesis of biaryls from arylzinc compounds using n-chlorosuccinimide or oxygen as an oxidant. Bull Chem Soc Jpn, 2001, 74: 2415–2420CrossRefGoogle Scholar
  32. 32.
    Hartwig JF. Organotransition Metal Chemistry: From Bonding to Catalysis. University Science Books: Sausalito, Calif, 2010Google Scholar
  33. 33.
    De Meijere A, Diederich F. Metal-Catalyzed Cross-Coupling Reactions. Wiley-VCH: Weinheim, 2004CrossRefGoogle Scholar
  34. 34.
    Negishi E-i, Meijere AD. Handbook of Organopalladium Chemistry for Organic Synthesis. Wiley-Interscience: New York, 2002CrossRefGoogle Scholar
  35. 35.
    Smidt J, Hafner W. A reaction of palladium chloride with allyl alcohol. Angew Chem, 1959, 71: 284CrossRefGoogle Scholar
  36. 36.
    Takacs JM, Jiang X. The wacker reaction and related alkene oxidation reactions. Curr Org Chem, 2003, 7: 369–396CrossRefGoogle Scholar
  37. 37.
    Sigman MS, Jensen DR. Ligand-modulated palladium-catalyzed aerobic alcohol oxidations. Acc Chem Res, 2006, 39: 221–229CrossRefGoogle Scholar
  38. 38.
    Gligorich KM, Sigman MS. Mechanistic questions about the reaction of molecular oxygen with palladium in oxidase catalysis. Angew Chem Int Ed, 2006, 45: 6612–6615CrossRefGoogle Scholar
  39. 39.
    Stahl SS. Palladium oxidase catalysis. Selective oxidation of organic chemicals by direct dioxygen-coupled turnover. Angew Chem Int Ed, 2004, 43: 3400–3420CrossRefGoogle Scholar
  40. 40.
    Gligorich KM, Sigman MS. Recent advancements and challenges of palladiumII-catalyzed oxidation reactions with molecular oxygen as the sole oxidant. Chem Commun, 2009: 3854–3867Google Scholar
  41. 41.
    Sigman MS, Schultz MJ. The renaissance of palladium(II)-catalyzed oxidation chemistry. Org Biomol Chem, 2004, 2: 2551–2554CrossRefGoogle Scholar
  42. 42.
    Diao T, Stahl SS. Synthesis of cyclic enones via direct palladium-catalyzed aerobic dehydrogenation of ketones. J Am Chem Soc, 2011, 133: 14566–14569CrossRefGoogle Scholar
  43. 43.
    Chen MS, White MC. A sulfoxide-promoted, catalytic method for the regioselective synthesis of allylic acetates from monosubstituted olefins via C-H oxidation. J Am Chem Soc, 2004, 126: 1346–1347CrossRefGoogle Scholar
  44. 44.
    Steinhoff BA, King AE, Stahl SS. Unexpected roles of molecular sieves in palladium-catalyzed aerobic alcohol oxidation. J Org Chem, 2006, 71: 1861–1868CrossRefGoogle Scholar
  45. 45.
    Liu G, Stahl SS. Two-faced reactivity of alkenes: Cis-versus trans-aminopalladation in aerobic Pd-catalyzed intramolecular aza-wacker reactions. J Am Chem Soc, 2007, 129: 6328–6335CrossRefGoogle Scholar
  46. 46.
    Steinhoff BA, Fix SR, Stahl SS. Mechanistic study of alcohol oxidation by the Pd(OAc)2/O2/DMSO catalyst system and implications for the development of improved aerobic oxidation catalysts. J Am Chem Soc, 2002, 124: 766–767CrossRefGoogle Scholar
  47. 47.
    Steinhoff BA, Stahl SS. Mechanism of Pd(OAc)2 /DMSO-catalyzed aerobic alcohol oxidation: Mass-transfer-limitation effects and catalyst decomposition pathways. J Am Chem Soc, 2006, 128: 4348–4355CrossRefGoogle Scholar
  48. 48.
    Mitsudome T, Umetani T, Nosaka N, Mori K, Mizugaki T, Ebitani K, Kaneda K. Convenient and efficient Pd-catalyzed regioselective oxyfunctionalization of terminal olefins by using molecular oxygen as sole reoxidant. Angew Chem Int Ed, 2006, 45: 481–485CrossRefGoogle Scholar
  49. 49.
    Steinhoff BA, Stahl SS. Ligand-modulated palladium oxidation catalysis: Mechanistic insights into aerobic alcohol oxidation with the Pd(OAc)2/pyridine catalyst system. Org Lett, 2002, 4: 4179–4181CrossRefGoogle Scholar
  50. 50.
    Schultz MJ, Adler RS, Zierkiewicz W, Privalov T, Sigman MS. Using mechanistic and computational studies to explain ligand effects in the palladium-catalyzed aerobic oxidation of alcohols. J Am Chem Soc, 2005, 127: 8499–8507CrossRefGoogle Scholar
  51. 51.
    Izawa Y, Stahl SS. Aerobic oxidative coupling of o-xylene: Discovery of 2-fluoropyridine as a ligand to support selective pd-catalyzed C-H functionalization. Adv Synth Catal, 2010, 352: 3223–3229CrossRefGoogle Scholar
  52. 52.
    Izawa Y, Pun D, Stahl SS. Palladium-catalyzed aerobic dehydrogenation of substituted cyclohexanones to phenols. Science, 2011, 333: 209–213CrossRefGoogle Scholar
  53. 53.
    Steinhoff BA, Guzei IA, Stahl SS. Mechanistic characterization of aerobic alcohol oxidation catalyzed by Pd(OAc)2/pyridine including identification of the catalyst resting state and the origin of nonlinear catalyst dependence. J Am Chem Soc, 2004, 126: 11268–11278CrossRefGoogle Scholar
  54. 54.
    Popp BV, Stahl SS. Mechanism of Pd(OAc)2/pyridine catalyst reoxidation by O2: Influence of labile monodentate ligands and identification of a biomimetic mechanism for O2 activation. Chem—Eur J, 2009, 15: 2915–2922Google Scholar
  55. 55.
    Iwasawa T, Tokunaga M, Obora Y, Tsuji Y. Homogeneous palladium catalyst suppressing pd black formation in air oxidation of alcohols. J Am Chem Soc, 2004, 126: 6554–6555CrossRefGoogle Scholar
  56. 56.
    Keith JM, Goddard WA. Mechanism for activation of molecular oxygen by cis- and trans-(pyridine)2Pd(OAc)H: Pd0 versus direct insertion. J Am Chem Soc, 2009, 131: 1416–1425CrossRefGoogle Scholar
  57. 57.
    Timokhin VI, Stahl SS. Bronsted base-modulated regioselectivity in the aerobic oxidative amination of styrene catalyzed by palladium. J Am Chem Soc, 2005, 127: 17888–17893CrossRefGoogle Scholar
  58. 58.
    Stahl SS, Thorman JL, Nelson RC, Kozee MA. Oxygenation of nitrogen-coordinated palladium(0): Synthetic, structural, and mechanistic studies and implications for aerobic oxidation catalysis. J Am Chem Soc, 2001, 123: 7188–7189CrossRefGoogle Scholar
  59. 59.
    Popp BV, Stahl SS. “Oxidatively induced” reductive elimination of dioxygen from an ETA2-peroxopalladium(II) complex promoted by electron-deficient alkenes. J Am Chem Soc, 2006, 128: 2804–2805CrossRefGoogle Scholar
  60. 60.
    Mueller JA, Sigman MS. Mechanistic investigations of the palladium-catalyzed aerobic oxidative kinetic resolution of secondary alcohols using (−)-sparteine. J Am Chem Soc, 2003, 125: 7005–7013CrossRefGoogle Scholar
  61. 61.
    Mueller JA, Jensen DR, Sigman MS. Dual role of (−)-sparteine in the palladium-catalyzed aerobic oxidative kinetic resolution of secondary alcohols. J Am Chem Soc, 2002, 124: 8202–8203CrossRefGoogle Scholar
  62. 62.
    Anderson BJ, Keith JA, Sigman MS. Experimental and computational study of a direct O2-coupled wacker oxidation: Water dependence in the absence of Cu salts. J Am Chem Soc, 2010, 132: 11872–11874CrossRefGoogle Scholar
  63. 63.
    Keith JM, Nielsen RJ, Oxgaard J, Goddard WA. Pd-mediated activation of molecular oxygen in a nonpolar medium. J Am Chem Soc, 2005, 127: 13172–13179CrossRefGoogle Scholar
  64. 64.
    Gligorich KM, Cummings SA, Sigman MS. Palladium-catalyzed reductive coupling of styrenes and organostannanes under aerobic conditions. J Am Chem Soc, 2007, 129: 14193–14195CrossRefGoogle Scholar
  65. 65.
    Decharin N, Popp BV, Stahl SS. Reaction of O2 with [(−)-sparteine]Pd(H)Cl: Evidence for an intramolecular [H-L]+ “reductive elimination” pathway. J Am Chem Soc, 2011, 133: 13268–13271CrossRefGoogle Scholar
  66. 66.
    Boisvert L, Denney MC, Kloek HS, Goldberg KI. Insertion of molecular oxygen into a palladium(II) methyl bond: A radical chain mechanism involving palladium(III) intermediates. J Am Chem Soc, 2009, 131: 15802–15814CrossRefGoogle Scholar
  67. 67.
    Jensen DR, Schultz MJ, Mueller JA, Sigman MS. A well-defined complex for palladium-catalyzed aerobic oxidation of alcohols: Design, synthesis and mechanistic considerations. Angew Chem Int Ed, 2003, 42: 3810–3813CrossRefGoogle Scholar
  68. 68.
    Konnick MM, Guzei IA, Stahl SS. Characterization of peroxo and hydroperoxo intermediates in the aerobic oxidation of n-heterocyclic-carbene-coordinated palladium(0). J Am Chem Soc, 2004, 126: 10212–10213CrossRefGoogle Scholar
  69. 69.
    Konnick MM, Gandhi BA, Guzei IA, Stahl SS. Reaction of molecular oxygen with a PdII-hydride to produce a Pd(II)-hydroperoxide: Acid catalysis and implications for Pd-catalyzed aerobic oxidation reactions. Angew Chem Int Ed, 2006, 45: 2904–2907CrossRefGoogle Scholar
  70. 70.
    Popp BV, Wendlandt JE, Landis CR, Stahl SS. Reaction of molecular oxygen with an nhc-coordinated Pd0 complex: Computational insights and experimental implications. Angew Chem Int Ed, 2007, 46: 601–604CrossRefGoogle Scholar
  71. 71.
    Popp BV, Stahl SS. Insertion of molecular oxygen into a palladium-hydride bond: Computational evidence for two nearly isoenergetic pathways. J Am Chem Soc, 2007, 129: 4410–4422CrossRefGoogle Scholar
  72. 72.
    Konnick MM, Stahl SS. Reaction of molecular oxygen with a pdii-hydride to produce a Pd(II)-hydroperoxide: Experimental evidence for an hx-reductive-elimination pathway. J Am Chem Soc, 2008, 130: 5753–5762CrossRefGoogle Scholar
  73. 73.
    Konnick MM, Decharin N, Popp BV, Stahl SS. O2 insertion into a palladium(II)-hydride bond: Observation of mechanistic crossover between HX-reductive-elimination and hydrogen-atom-abstraction pathways. Chem Sci, 2011, 2: 326–330CrossRefGoogle Scholar
  74. 74.
    Denney MC, Smythe NA, Cetto KL, Kemp RA, Goldberg KI. Insertion of molecular oxygen into a palladium(II) hydride bond. J Am Chem Soc, 2006, 128: 2508–2509CrossRefGoogle Scholar
  75. 75.
    Keith JM, Muller RP, Kemp RA, Goldberg KI, Goddard WA, Oxgaard J. Mechanism of direct molecular oxygen insertion in a palladium(II)-hydride bond. Inorg Chem, 2006, 45: 9631–9633CrossRefGoogle Scholar
  76. 76.
    Adamo C, Amatore C, Ciofini I, Jutand A, Lakmini H. Mechanism of the palladium-catalyzed homocoupling of arylboronic acids: Key involvement of a palladium peroxo complex. J Am Chem Soc, 2006, 128: 6829–6836CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.College of Chemistry and Molecular SciencesWuhan UniversityWuhanChina

Personalised recommendations