Science China Chemistry

, Volume 55, Issue 8, pp 1525–1531 | Cite as

Structure-property relationships in ILs: A study of the alkyl chain length dependence in vaporisation enthalpies of pyridinium based ionic liquids

  • Dzmitry H. Zaitsau
  • Andrei V. Yermalayeu
  • Vladimir N. Emel’yanenko
  • Sergey P. Verevkin
  • Urs Welz-Biermann
  • Thomas Schubert
Articles Special Issue · Ionic Liquid and Green Chemistry

Abstract

The enthalpies of vaporization for the series of pyridinium-based ionic liquids with bis(trifluoromethylsulfonyl)imide anion [CnPy][NTf2] (n = 2, 3, 4, 5, and 6) have been determined with the quartz crystal microbalance technique combined with the Langmuir evaporation. The linear dependence of vaporization enthalpies on the chain length has been revealed. New approach based on volumetric, surface tension, and speed of sound measurements has been developed for estimation of heat capacity differences between gas and liquid phase, which were required for adjustment of measured vaporization enthalpies to the reference temperature 298 K.

Keywords

ionic liquids enthalpy of vaporization quartz crystal microbalance structure-property relations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11426_2012_4662_MOESM1_ESM.pdf (527 kb)
Supplementary material, approximately 527 KB.

References

  1. 1.
    Rantwijk FV, Sheldon RA. Biocatalysis in ionic liquids. Chem Rev, 2007, 107: 2757–2785CrossRefGoogle Scholar
  2. 2.
    Greaves TL, Drummond CJ. Protic ionic liquids: Properties and applications. Chem Rev, 2008, 108: 206–237CrossRefGoogle Scholar
  3. 3.
    Hapiot P, Lagrost C. Electrochemical reactivity in room-temperature ionic liquids. Chem Rev, 2008, 108: 2238–2264CrossRefGoogle Scholar
  4. 4.
    Jessop PG, Subramaniam B. Gas-expanded liquids. Chem Rev, 2007, 107: 2666–2694CrossRefGoogle Scholar
  5. 5.
    Visser AE, Rogers RD. Room-temperature ionic liquids: New solvents for f-element separations and associated solution chemistry. J Solid State Chem, 2003, 171: 109–113CrossRefGoogle Scholar
  6. 6.
    Kim GT, Appetecchi GB, Alessandrini F, Passerini S. Solvent-free, PYR1ATFSI ionic liquid-based ternary polymer electrolyte systems I. Electrochemical characterization. J Power Sources, 2007, 171: 861–869CrossRefGoogle Scholar
  7. 7.
    Orita A, Kamijima K, Yoshida M, Yang L. Application of sulfonium-, and thioxonium-based salts as electric double-layer capacitor electrolytes. J Power Sources, 2010, 195: 6970–6976CrossRefGoogle Scholar
  8. 8.
    Lazzari M, Mastragostino M, Pandolfo AG, Ruiz V, Soavi F. Role of carbon porosity and ion size in the development of ionic liquid based supercapacitors. J Electrochem Soc, 2011, 158: A22–A25CrossRefGoogle Scholar
  9. 9.
    Orita A, Kamijima K, Yoshida M. Allyl-functionalized ionic liquids as electrolytes for electric double-layer capacitors. J Power Sources, 2010, 195: 7471–7479CrossRefGoogle Scholar
  10. 10.
    Fang SH, Yang L, Wei C, Peng CX, Tachibana K, Kamijima K. Low-viscosity and low-melting point asymmetric trialkylsulfonium based ionic liquids as potential electrolytes. Electrochem Commun, 2007, 9: 2696–2702CrossRefGoogle Scholar
  11. 11.
    Kazock J, Taggougui M, Anouti M, Willman P, Carre B, Lemordant D. Ionic liquids based on 1-aza-bicyclo[2,2,2]cotane (quinuclidine)salts: synthesis and physicochemical properties. J Appl Electrochem, 2009, 39: 2461–2467CrossRefGoogle Scholar
  12. 12.
    Sakaebe H, Matsumoto H. N-Methyl-N-propylpiperdinium bis(trifluoromethanesulfonyl) imide (PP13-TFSI)-novel electrolyte base for Li battery. Electrochem Commun, 2003, 5: 594–598CrossRefGoogle Scholar
  13. 13.
    Yang L, Zhang ZX, Gao XH, Zhang HQ, Mashita K. Asymmetric sulfonium-based molten salts with TFSI- or PF6 anion as novel electrolytes. J Power Sources, 2006, 162: 614–619CrossRefGoogle Scholar
  14. 14.
    Matsumoto H, Sakaebe H, Tatsumi K, Kikuta M, Ishiko E, Kono M. Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfony)imide[FSI]. J Power Sources, 2006, 160: 1308–1303CrossRefGoogle Scholar
  15. 15.
    Liu QS, Yang M, Li PP, Sun SS, Welz-Biermann U, Tan ZC, Zhang QG. Physicochemical properties of ionic liquids [C3py][NTf2] and [C6py][NTf2]. J Chem Eng Data, 2011, 56: 4094–4101CrossRefGoogle Scholar
  16. 16.
    Bittner B, Janus E, Milchert E. N-Hexylpyridinium bis(trifluorome-thylsulfonyl)imide and Lewis acids-catalytic systems for Diels-Alder reaction. Cent Eur J Chem, 2011, 9: 192–198CrossRefGoogle Scholar
  17. 17.
    Papaiconomou N, Estager J, Traore Y, Bauduin P, Bas C, Legeai S, Viboud S, Draye M. Synthesis, physicochemical properties, and toxicity data of new hydrophobic ionic liquids containing dimethylpyridinium and trimethylpyridinium cations. J Chem Eng Data, 2010, 55: 1971–1979CrossRefGoogle Scholar
  18. 18.
    Rodriguez-Cabo B, Francisco M, Soto A, Arce A. Hexyl dimethylpyridinium ionic liquids for desulfurization of fuels. Effect of the position of alkyl side chains. Fluid Phase Equil, 2012, 314: 107–111CrossRefGoogle Scholar
  19. 19.
    Gaile AA, Zalishchevkii GD, Gafur NN, Semenov LV, Varshavski OM, Fedyanin NP, Koldobskaya LL. Removal of aromatic hydrocarbons from reforming naphtha. combined extraction-extractive-azeotropic distillation process. Chem Thechnol Fuels Oils, 2004, 40: 215–221Google Scholar
  20. 20.
    Verevkin SP, Zaitsau DH, Emel’yanenko VN, Heintz A. A new method for the determination of vaporization enthalpies of ionic liquids at low temperatures. J Phys Chem B, 2011, 115: 12889–12895CrossRefGoogle Scholar
  21. 21.
    Zaitsau DH, Verevkin SP, Emel’yanenko VN, Heintz A. Vaporization enthalpies of imidazolium based ionic liquids: Dependence on alkyl chain length. ChemPhysChem, 2011, 12: 3609–3613CrossRefGoogle Scholar
  22. 22.
    Zaitsau DH, Fumino K, Emel’yanenko VN, Yermalaeu AV, Ludwig R, Verevkin SP. Structure-property relationships in ILs: A study of the anion dependence in vaporisation enthalpies of imidazolium based ionic liquids. ChemPhysChem, 2012, in pressGoogle Scholar
  23. 23.
    Verevkin SP, Zaitsau DH, Emel’yanenko VN, Ralys RV, Schick C. Express thermo-gravimetric method for the vaporization enthalpies appraisal for very low volatile molecular and ionic compounds. Thermochim Acta, 2012, acceptedGoogle Scholar
  24. 24.
    Sauerbrey G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z Phys A, 1959, 155: 206–222Google Scholar
  25. 25.
    Paulechka YU, Kabo GJ, Blokhin AV, Vydrov OA, Magee JW, Frenkel M. Thermodynamic properties of 1-butyi-3-methylimidazolium hexafluorophosphate in the ideal gas state. J Chem Eng Data, 2003, 48: 457–462CrossRefGoogle Scholar
  26. 26.
    Moelwyn-Hughes EA. Physical Chemistry. New York, London, Paris: Pergamon Press, 1954Google Scholar
  27. 27.
    Paulechka YU, Zaitsau DH, Kabo GJ. On the difference between isobaric and isochoric heat capacities of liquid cyclohexyl esters. J Mol Liq, 2004, 115: 105–111CrossRefGoogle Scholar
  28. 28.
    Diedrichs A, Gmehling J. Measurement of heat capacities of ionic liquids by differential scanning calorimetry. Fluid Phase Equilib, 2006, 244: 68–77CrossRefGoogle Scholar
  29. 29.
    Paulechka Y. Heat capacity of room-temperature ionic liquids: A critical review. J Phys Chem Ref Data, 2010, 39(3): 033108 1–23CrossRefGoogle Scholar
  30. 30.
    Wang C, Luo H, Li H, Dai S. Direct UV-spectroscopic measurement of selected ionic-liquid vapors. PhysChem Chem Phys, 2010, 12: 7246–7250Google Scholar
  31. 31.
    Deyko A, Lovelock KRJ, Corfield JA, Taylor AW, Gooden PN, Villar-Garcia IJ, Licence P, Jones RG, Krasovskiy VG, Chernikova EA, Kustov LM. Measuring and predicting ΔvapH298 values of ionic liquids. Phys Chem Chem Phys, 2009, 11: 8544–8555CrossRefGoogle Scholar
  32. 32.
    Kulikov D, Verevkin SP, Heintz A. Enthalpies of vaporization of a series of aliphatic alcohols: Experimental results and values predicted by the ERAS-model. Fluid Phase Equil, 2001, 192: 187–207CrossRefGoogle Scholar
  33. 33.
    Emel’yanenko VN, Verevkin SP, Koutek B, Doubsky J. Vapour pressures and enthalpies of vapourization of a series of the linear aliphatic nitriles. J Chem Thermodyn., 2005, 37: 73–81CrossRefGoogle Scholar
  34. 34.
    Verevkin SP, Krasnykh EL, Vasiltsova TV, Koutek B, Doubsky J, Heintz A. Vapor pressures and enthalpies of vaporization of a series of the linear aliphatic aldehydes. Fluid Phase Equil, 2003, 206: 331–339CrossRefGoogle Scholar
  35. 35.
    Verevkin SP, Zaitsau DH, Emel’yanenko VN, Schick C, Liu H, Maginn E, Bulut S, Krossing I, Kalb R. Obscured vaporization enthalpies of ionic liquids: Milky way, bent up, or straight ahead? new experimental data on 1-alkyl-3-methylimidazolium bis-(trifluoro-methylsulfonyl)-imides with the even and odd number of C-atoms in the alkyl chain. J Am Chem Soc, 2012, submittedGoogle Scholar
  36. 36.
    Mansson M, Sellers P, Stridh G, Sunner S. Enthalpies of vaporization of some l-substituted n-alkanes. J Chem Thermodyn, 1977, 9: 91–97CrossRefGoogle Scholar
  37. 37.
    Zaitsau DH, Kabo GJ, Strechan AA, Paulechka YU, Tschersich A, Verevkin SP, Heintz A. Experimental vapor pressures of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides and a correlation scheme for estimation of vaporization enthalpies of ionic liquids. J Phys Chem A, 2006, 110: 7303–7306CrossRefGoogle Scholar
  38. 38.
    Deyko A, Hessey SG, Licence P, Chernikova EA, Krasovskiy VG, Kustov LM, Jones RG. The enthalpies of vaporisation of ionic liquids: new measurements and predictions. Phys Chem Chem Phys, 2012, 14: 3181–3193CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dzmitry H. Zaitsau
    • 1
  • Andrei V. Yermalayeu
    • 1
  • Vladimir N. Emel’yanenko
    • 1
  • Sergey P. Verevkin
    • 1
  • Urs Welz-Biermann
    • 2
  • Thomas Schubert
    • 3
  1. 1.Department of Physical ChemistryUniversity of RostockRostockGermany
  2. 2.Evonik Degussa Taiwan Ltd.TaipeiChina
  3. 3.IoLiTec Ionic Liquids Technologies GmbHHeilbronnGermany

Personalised recommendations