Advertisement

Science China Chemistry

, Volume 55, Issue 8, pp 1671–1676 | Cite as

Novel acid initiators for the rapid cationic polymerization of styrene in room temperature ionic liquids

  • R. Vijayaraghavan
  • D. R. Macfarlane
Articles Special Issue · Ionic Liquid and Green Chemistry

Abstract

Cationic polymerization of styrene has been achieved using several novel acidic initiators in room temperature ionic liquids (ILs) under mild reaction conditions to obtain polymers of low molecular weight with narrow polydispersity. Both strong protic acids such as bis(trifluoromethanesulfonyl) amide acid (HTFSA) and a moderately weak acid such as bisoxalato phosphorous acid (HBOP) have been studied as initiators. It has been observed that HTFSA initiates the polymerization rapidly even at room temperature and below, as compared to HBOP which produces a slower polymerization requiring elevated temperatures to complete. The relative difference in reactivity of the initiators as compared to the previously described HBOB initiator is discussed in terms of the difference in their proton acidity and the consequential basicity of the anions. The efficiency of different ILs as the reaction solvent is also presented.

Keywords

cationic polymerization HTFSA HBOP ILs polydispersity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Satoh K, Nakashima J, Kamigaito M. Novel BF3OEt2/R-OH initiating system for controlled cationic polymerization of styrene in the presence of water. Macromolecules, 2001, 34: 396–401CrossRefGoogle Scholar
  2. 2.
    Kiran P, Anuradha V. Free radical polymerization of styrene with p-nitrobenzyl triphenyl phosphonium ylide as an initiator. J Polym Sci Part-A, 2005, 43(24): 6524–6533CrossRefGoogle Scholar
  3. 3.
    Carlotti S, Ménoret S, Desbois P, Nissner N, Warzelhan V, Deffieux A. Sodium hydride/trialkylaluminum complexes for the controlled anionic polymerization of styrene at high temperature. Macromol Rapid Commun, 2006, 27: 905–909CrossRefGoogle Scholar
  4. 4.
    Juergen S. Effect of impurities on the syndiospecific coordination polymerization of styrene. Macromol Mater & Eng, 2005, 290(8): 833–842CrossRefGoogle Scholar
  5. 5.
    Oh JM, Kang SJ, Kwon OS, Choi SK. Synthesis of ABA triblock copolymers of styrene and P-methylstyrene by living cationic polymerization using the bifunctional initiating system 1,4-bis(1-chloroethyl)benzene/SnCl4 in the presence of 2,6-di-tert-butylpyri-dine. Macromolecules, 1995, 28: 3015–3021CrossRefGoogle Scholar
  6. 6.
    Hasebe T, Kamigaito M, Swamoto M. Living cationic polymerization of styrene with TiCl3(OiPr) as a Lewis acid activator. Macromolecules, 1996, 29: 6100–6103CrossRefGoogle Scholar
  7. 7.
    Lin CH, Xiang JS, Matyjaszewski K. Living cationic polymerization of styrene in the presence of tetrabutylammonium salts. Macromolecules, 1993, 26: 2785–2790CrossRefGoogle Scholar
  8. 8.
    Boodhoo AVK, Dunk WAE, Vicevic M, Jachuck RJ, Sage V, Macquarrie DJ, Clark JH. Classical cationic polymerisation in a novel spinning disc reactor using silica supported BF3 catalyst. J Appl Polym Sci, 2006, 101: 8–19CrossRefGoogle Scholar
  9. 9.
    Kamigaito M, Nakashima J, Satoh K, Swamoto M. Controlled cationic polymerization of p-(chloromethyl) styrene: BF3-catalyzed selective activation of a C-O terminal from alcohol. Macromolecules, 2003, 36: 3540–3544CrossRefGoogle Scholar
  10. 10.
    Radchenko AV, Kostjuk, SV, Vasilenko IV, Ganachaud F, Kaputsky FN. Controlled/living cationic polymerization of styrene with BF3OEt2 as a coinitiator in the presence of water: Improvements and limitations. Eur Polym J, 2007, 43: 2576–2583CrossRefGoogle Scholar
  11. 11.
    Clark JH, Macquarrie DJ. Catalysis of liquid phase organic reactions using chemically modified mesoporous inorganic solids. Chem Commun, 1998, 853–860Google Scholar
  12. 12.
    Sage V, Clark JH, Macquarrie DJ. Cationic polymerization of styrene using mesoporous silica supported aluminum chloride. J Mol Catal, 2003, 198: 349–356CrossRefGoogle Scholar
  13. 13.
    Wilkes JS. A short history of ILs-from molten salts to neoteric solvents. Green Chem, 2002, 4: 73–80CrossRefGoogle Scholar
  14. 14.
    Wasserscheid P, Welton T. ILs in Synthesis. Wiley, 2003, Weinheim; Wasserscheid and Keim K. ILs — NewSolutions for Transition Metal Catalysis. Angew Chem Int Ed, 2000, 39: 3772–3779Google Scholar
  15. 15.
    Ma H, Wan X, Chen X, Zhou QF. Reverse atom transfer radical polymerization of methyl methacrylate in room-temperature ILs. J Polym Sci Part A, 2003, 41(1): 143–151CrossRefGoogle Scholar
  16. 16.
    Hong K, Zhang H, Mays JW, Vissar AE, Brazel CS, Holbrey JD, Reichert WM, Rogers RD. Conventional free radical polymerization in room temperature ILs: A green approach to commodity polymers with practical advantages. Chem Commun, 2002, 13: 1368–1369CrossRefGoogle Scholar
  17. 17.
    Vijayaraghavan R, Surianarayanan M, MacFarlane DR. ILs as moderators in exothermic polymerization reactions. Angew Chem Int Ed, 2004, 43: 5363–5366CrossRefGoogle Scholar
  18. 18.
    Vijayaraghavan R, MacFarlane DR. Charge transfer polymerization in ILs. Aust J Chem, 2004, 57(2): 129–133CrossRefGoogle Scholar
  19. 19.
    Basko M, Biedron T, Kubisa P. Polymerization processes in ILs, cationic polymerization of styrene. Macromol Symp, 2006, 240: 107–113CrossRefGoogle Scholar
  20. 20.
    Vijayaraghavan R, MacFarlane DR. Living cationic polymerization of styrene in an IL. Chem Commun, 2004, 700–701Google Scholar
  21. 21.
    Vijayaraghavan R, MacFarlane DR. Organoborate acids as initiators for cationic polymerization of styrene in an IL medium. Macromolecules, 2007, 40: 6515–6520CrossRefGoogle Scholar
  22. 22(a).
    Forsyth M, Huang J, MacFarlane DR. Lithium doped N-methyl-N-ethylpyrrolidiniumbis(trifluoromethanesulfonyl)amide fast-ion conducting plastic crystals. J Mater Chem, 2000, 10: 2259–2265CrossRefGoogle Scholar
  23. 22(b).
    MacFarlane DR, Meakin P, Sun J, Amini N, Forsyth M. Pyrrolidinium imides: A new family of molten salts and conductive plastic crystal phases. J Phys Chem B, 1999, 103: 4164–4170CrossRefGoogle Scholar
  24. 23.
    Bonhote P, Dias AP, Papageogiou N, Kalyanasundaram K, Gratzel M. Hydrophobic, highly conductive ambient temperature molten salts. Inorg Chem, 1996, 35: 1168–1178CrossRefGoogle Scholar
  25. 24.
    Bradaric C, Downard A, Kennedy C, Robertson A, Zhou Y. Industrial preparation of phosphonium ILs. Green Chem, 2003, 5: 143–152CrossRefGoogle Scholar
  26. 25.
    MacFarlane DR, Pringle JM, Johansson KM, Forsyth SA, Forsyth M. Lewis base ILs. Chem Commun, 2006, 1905–1917Google Scholar
  27. 26.
    Urakawa O, Swallen SF, Ediger MD, Von Meerwall ED. Self-diffusion and viscosity of low molecular weight styrene over a wide temperature range. Macromolecules, 2004, 37: 1558–1564CrossRefGoogle Scholar
  28. 27.
    Marechal JM, Carlotti S, Shcheglova L, Deffieux A. Stereoregulation in the anionic polymerization of styrene initiated by superbases. Polymer, 2003, 44: 7601–7607CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of ChemistryMonash UniversityVictoriaAustralia

Personalised recommendations