Science China Chemistry

, Volume 55, Issue 8, pp 1488–1499 | Cite as

Cyano-containing ionic liquids for the extraction of aromatic hydrocarbons from an aromatic/aliphatic mixture

Reviews Special Issue · Ionic Liquid and Green Chemistry

Abstract

Ionic liquids can replace conventional solvents in aromatic/aliphatic extractions, if they have higher aromatic distribution coefficients and higher or similar aromatic/aliphatic selectivities. Also physical properties, such as density and viscosity, must be taken into account if a solvent is applied in an industrial extraction process. Cyano-containing ionic liquids have a lower density than the benchmark solvent sulfolane and a higher viscosity. Sulfolane is from a hydrodynamic point of view a better solvent than ionic liquids for the aromatic/aliphatic extraction. The most suitable ionic liquids for the extraction of aromatic hydrocarbons from a mixture of aromatic and aliphatic hydrocarbons are [bmim]C(CN)3, [3-mebupy]N(CN)2, [3-mebupy]C(CN)3, [3-mebupy]B(CN)4 and [mebupyrr]B(CN)4. They have factors of 1.2–2.3 higher mass-based distribution coefficients than sulfolane and a similar or higher, up to a factor of 1.9 higher, aromatic/aliphatic selectivity than sulfolane. The IL [3-mebupy]N(CN)2 is a better extractant for the separation of toluene from a mixture of toluene/n-heptane in a pilot plant Rotating Disc Contactor (RDC) than sulfolane.

Keywords

sulfolane physical properties density viscosity surface tension pilot plant RDC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    MacFarlane DR, Seddon KR. Ionic liquids-progress on the fundamental issues. Aust J Chem, 2007, 60(1): 3–5CrossRefGoogle Scholar
  2. 2.
    Meindersma GW, Maase M, de Haan AB. Ionic Liquids. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, 2007, 33Google Scholar
  3. 3.
    Rogers RD, Seddon KR. Ionic liquids—solvents of the future? Science, 2003, 302(5646): 792–793CrossRefGoogle Scholar
  4. 4.
    Wasserscheid P, Welton T, ed. Ionic Liquids in Synthesis, 2nd ed. Weinhein D. Wiley-VCH Verlags GmbH & Co. KgaA; 2008Google Scholar
  5. 5.
    Plechkova NV, Seddon KR. Applications of ionic liquids in the chemical industry. Chem Soc Rev, 2008, 37(1): 123–150CrossRefGoogle Scholar
  6. 6.
    Plechkova NV, Rogers RD, Seddon KR, ed. Ionic liquids: From Knowledge to Application. Washington DC: Amercian Chemical Society, 2009Google Scholar
  7. 7.
    Meindersma GW, Hansmeier AR, de Haan AB. Ionic liquids for aromatics extraction. present status and future outlook. Ind Eng Chem Res, 2010, 49(16): 7530–7540CrossRefGoogle Scholar
  8. 8.
    Anjan ST. Ionic liquids for aromatic extraction: are they ready? Chem Eng Progr, 2006, 102(12): 30–39Google Scholar
  9. 9.
    Abu-Eishah SI, Dowaidar AM. Liquid-liquid equilibrium of ternary systems of cyclohexane + (benzene, + toluene, + ethylbenzene, or + o-xylene) + 4-methyl-n-butyl pyridinium tetrafluoroborate ionic liquid at 303.15 K. J Chem Eng Data, 2008, 53(8): 1708–1712CrossRefGoogle Scholar
  10. 10.
    Meindersma GW, Podt AJG, de Haan AB. Ternary liquid-liquid equilibria for mixtures of toluene + n-heptane + an ionic liquid. Fluid Phase Equilib, 2006, 247(1–2): 158–168CrossRefGoogle Scholar
  11. 11.
    Meindersma GW, Podt A, de Haan AB. Selection of ionic liquids for the extraction of aromatic hydrocarbons from aromatic/aliphatic mixtures. Fuel Process Technol, 2005, 87(1): 59–70CrossRefGoogle Scholar
  12. 12.
    Bailes PJ, Gledhill J, Godfrey JC, Slater MJ. Hydrodynamic behaviour of packed, rotating-disk and kühni liquid/liquid extraction columns. Chem Eng Res Des, 1986, 64(1): 43–55Google Scholar
  13. 13.
    Blazej L, Vajda M, Bafrncova S. Hydrodynamic properties of rotary-disc extractor.1. distribution of the sizes of drops and their residence times. Chem Pap (Chem Zvesti), 1978, 32(3): 314–327Google Scholar
  14. 14.
    Kamath MS, Subba Rau MG. Prediction of operating range of rotor speeds for rotating disc contactors. Can J Chem Eng, 1985, 63(4): 578–584CrossRefGoogle Scholar
  15. 15.
    Godfrey JC, Slater MJ. Liquid-Liquid Extraction Equipment. New York, NY USA: John Wiley & Sons, Inc, 1994Google Scholar
  16. 16.
    Moreira É, Pimenta LM, Carneiro LL, Faria RCL, Mansur MB, Ribeiro JRCP. Hydrodynamic behavior of a rotating disc contactor under low agitation conditions. Chem Eng Commun, 2005, 192(8): 1017–1035CrossRefGoogle Scholar
  17. 17.
    Murakami A, Misonou A, Inoue K. Dispersed phase holdup in a rotating disc extraction column. Int Chem Eng, 1978, 18(1): 16–22Google Scholar
  18. 18.
    Onink F, Drumm C, Meindersma GW, Bart H-J, de Haan AB. Hydrodynamic behavior analysis of a rotating disc contactor for aromatics extraction with 4-methyl-butyl-pyridinium.BF4 by CFD. Chem Eng J, 2010, 160(2): 511–521CrossRefGoogle Scholar
  19. 19.
    Meindersma GW, Onink F, Hansmeier AR, de Haan AB. Long term pilot plant experience on aromatics extraction with ionic liquids. Sep Sci Technol, 2012, 47(2): 337–345CrossRefGoogle Scholar
  20. 20.
    MacFarlane DR, Golding J, Forsyth S, Forsyth M, Deacon GB. Low viscosity ionic liquids based on organic salts of the dicyanamide anion. Chem Commun, 2001, (16): 1430–1431CrossRefGoogle Scholar
  21. 21.
    Seki S, Kobayashi T, Kobayashi Y, Takei K, Miyashiro H, Hayamizu K, Tsuzuki S, Mitsuqi T, Umebayashi Y. Effects of cation and anion on physical properties of room-temperature ionic liquids. J Mol Liq, 2010, 152(1–3): 9–13CrossRefGoogle Scholar
  22. 22.
    Arce A, Earle MJ, Rodriguez H, Seddon KR. Separation of aromatic hydrocarbons from alkanes using the ionic liquid 1-ethyl-3-methy-limidazolium bis{(trifluoromethyl) sulfonyl}amide. Green Chem, 2007, 9(1): 70–74CrossRefGoogle Scholar
  23. 23.
    Arce A, Earle MJ, Rodriguez H, Seddon KR, Soto A. 1-Ethyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide as solvent for the separation of aromatic and aliphatic hydrocarbons by liquid extraction-extension to C7- and C8-fractions. Green Chem, 2008, 10(12): 1294–1300CrossRefGoogle Scholar
  24. 24.
    Arce A, Earle MJ, Rodríguez H, Seddon KR, Soto A. Isomer effect in the separation of octane and xylenes using the ionic liquid 1-ethyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide. Fluid Phase Equilib, 2010, 294(1–2): 180–186CrossRefGoogle Scholar
  25. 25.
    Garcia S, Larriba M, Garcia Jn, Torrecilla JS, Rodriguez F. Liquid-liquid extraction of toluene from heptane using 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids. J Chem Eng Data, 2011, 56(1): 113–118CrossRefGoogle Scholar
  26. 26.
    Pereiro AB, Araújo JMM, Esperança JMSS, Marrucho IM, Rebelo LPN. Ionic liquids in separations of azeotropic systems—A review. J Chem Thermodyn, 2012, 46: 2–28CrossRefGoogle Scholar
  27. 27.
    Meindersma GW, Podt A, de Haan AB. Ternary liquid-liquid equilibria for mixtures of an aromatic + an aliphatic hydrocarbon + 4-methyl-n-butylpyridinium tetrafluoroborate. J Chem Eng Data, 2006, 51(5): 1814–1819CrossRefGoogle Scholar
  28. 28.
    Kelayeh SA, Jalili AH, Ghotbi C, Hosseini-Jenab M, Taghikhani V. Densities, viscosities, and surface tensions of aqueous mixtures of sulfolane + triethanolamine and sulfolane + diisopropanolamine. J Chem Eng Data, 2011, 56(12): 4317–4324Google Scholar
  29. 29.
    Fröba AP, Kremer H, Leipertz A. Density, refractive index, interfacial tension, and viscosity of ionic liquids [EMIM][EtSO4], [EMIM][NTf2], [EMIM][N(CN)2], and [OMA][NTf2] in dependence on temperature at atmospheric pressure. J Phys Chem B, 2008, 112(39): 12420–12430CrossRefGoogle Scholar
  30. 30.
    Koller T, Rausch MH, Schulz PS, Berger M, Wasserscheid P, Economou IG, Leipertz A, Fröba AP. Viscosity, interfacial tension, self-diffusion coefficient, density, and refractive index of the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate as a function of temperature at atmospheric pressure. J Chem Eng Data, 2012, 57(3): 828–835CrossRefGoogle Scholar
  31. 31.
    Ficke LE, Novak RR, Brennecke JF. Thermodynamic and thermophysical properties of ionic liquid + water systems. J Chem Eng Data, 2010, 55(11): 4946–4950CrossRefGoogle Scholar
  32. 32.
    Galán Sánchez LM, Ribé Espel J, Onink F, Meindersma GW, de Haan AB. Density, viscosity, and surface tension of synthesis grade imidazolium, pyridinium, and pyrrolidinium based room temperature ionic liquids. J Chem Eng Data, 2009, 54(10): 2803–2812CrossRefGoogle Scholar
  33. 33.
    Nieto de Castro CA, Langa E, Morais AL, Lopes MLM, Lourenço MJV, Santos FJV, Santos NSCS, Canongia LJN, Veiga HIM, Macatrao M, Esperanca JMSS, Marques CS, Rebelo LPN, Afonso CAM. Studies on the density, heat capacity, surface tension and infinite dilution diffusion with the ionic liquids [C4mim][NTf2], [C4mim][dca], [C2mim][EtOSO3] and [Aliquat][dca]. Fluid Phase Equilib, 2010, 294(1–2): 157–179CrossRefGoogle Scholar
  34. 34.
    Carvalho PJ, Regueira T, Santos LMNBF, Fernandez J, Coutinho JAP. Effect of water on the viscosities and densities of 1-butyl-3-methylimidazolium dicyanamide and 1-butyl-3-methylimidazolium tricyanomethane at atmospheric pressureâ. J Chem Eng Data, 2009, 55(2): 645–652CrossRefGoogle Scholar
  35. 35.
    Seoane RG, Corderí S, Gómez E, Calvar N, González EJ, Macedo EA, Dominguez A. Temperature dependence and structural influence on the thermophysical properties of eleven commercial ionic liquids. Ind Eng Chem Res, 2012, 51(5): 2492–2504CrossRefGoogle Scholar
  36. 36.
    Domańska U, Lukoshko EV, Wlazło M. Measurements of activity coefficients at infinite dilution for organic solutes and water in the ionic liquid 1-hexyl-3-methylimidazolium tetracyanoborate. J Chem Thermodyn, 2012, 47: 389–396CrossRefGoogle Scholar
  37. 37.
    Domańska U, Marciniak A. Physicochemical properties and activity coefficients at infinite dilution for organic solutes and water in the ionic liquid 1-decyl-3-methylimidazolium tetracyanoborate. J Phys Chem B, 2010, 114(49): 16542–16547CrossRefGoogle Scholar
  38. 38.
    Meindersma GW, Simons BTJ, de Haan AB. Physical properties of 3-methyl-N-butylpyridinium tetracyanoborate and 1-butyl-1-methy-lpyrrolidinium tetracyanoborate and ternary LLE data of [3-mebupy]B(CN)4 with an aromatic and an aliphatic hydrocarbon at T = 303.2 K and 328.2 K and p = 0.1 MPa. J Chem Thermodyn, 2011, 43(11): 1628–1640CrossRefGoogle Scholar
  39. 39.
    Meindersma GW, van Acker T, de Haan AB. Physical properties of 3-methyl-N-butylpyridinium tricyanomethanide and ternary LLE data with an aromatic and an aliphatic hydrocarbon at T = (303.2 and 328.2) K and p = 0.1 MPa. Fluid Phase Equilib, 2011, 307(1): 30–38CrossRefGoogle Scholar
  40. 40.
    Blahut A, Dohnal V. Interactions of volatile organic compounds with the ionic liquid 1-butyl-1-methylpyrrolidinium dicyanamide. J Chem Eng Data, 2011, 56(12): 4909–4918Google Scholar
  41. 41.
    Schreiner C, Zugmann S, Hartl R, Gores HJ. Fractional walden rule for ionic liquids: examples from recent measurements and a critique of the so-called ideal KCl line for the walden plot. J Chem Eng Data, 2010, 55(5): 1784–1788CrossRefGoogle Scholar
  42. 42.
    Harris KR, Kanakubo M, Woolf LA. Temperature and pressure dependence of the viscosity of the ionic liquids 1-hexyl-3-methyli-midazolium hexafluorophosphate and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J Chem Eng Data, 2007, 52(3): 1080–1085CrossRefGoogle Scholar
  43. 43.
    Domanska U, Królikowska M, Królikowski M. Phase behaviour and physico-chemical properties of the binary systems {1-ethyl-3-methylimidazolium thiocyanate, or 1-ethyl-3-methylimidazolium tosylate + water, or + an alcohol}. Fluid Phase Equilib, 2010, 294(1–2): 72–83CrossRefGoogle Scholar
  44. 44.
    Carvalho PJ, Regueira T, Santos LMNBF, Fernandez J, Coutinho JAP. Effect of water on the viscosities and densities of 1-butyl-3-methylimidazolium dicyanamide and 1-butyl-3-methylimidazolium tricyanomethane at atmospheric pressure. J Chem Eng Data, 2010, 55(2): 645–652CrossRefGoogle Scholar
  45. 45.
    Klomfar J, Soucková M, Pátek J. Surface tension measurements with validated accuracy for four 1-alkyl-3-methylimidazolium based ionic liquids. J Chem Thermodyn, 2010, 42(3): 323–329CrossRefGoogle Scholar
  46. 46.
    Klomfar J, Soucková M, Pátek J. Temperature dependence of the surface tension and density at 0.1 mpa for 1-ethyl- and 1-butyl-3-methylimidazolium dicyanamide. J Chem Eng Data, 2011, 56(8): 3454–3462CrossRefGoogle Scholar
  47. 47.
    Tong J, Liu Q-S, Kong Y-X, Fang D-W, Welz-Biermann U, Yang J-Z. Physicochemical properties of an ionic liquid [C2mim][B(CN)4]. J Chem Eng Data, 2010, 55(9): 3693–3696CrossRefGoogle Scholar
  48. 48.
    Liu Q-S, Yang M, Yan P-F, Liu X-M, Tan Z-C, Welz-Biermann U. Density and surface tension of ionic liquids [Cnpy][NTf2] (n = 2, 4, 5). J Chem Eng Data, 2010, 55(11): 4928–4930CrossRefGoogle Scholar
  49. 49.
    Deal CH, Jr., Evans HD, Oliver ED, Papadopoulos MN. A better way to extract aromatics. Petr Refiner, 1959, 38(9): 185–192Google Scholar
  50. 50.
    Steele WV, Chirico RD, Knipmeyer SE, Nguyen A. Vapor pressure, heat capacity, and density along the saturation line, measurements for cyclohexanol, 2-cyclohexen-1-one, 1,2-dichloropropane, 1,4-di-tert-butylbenzene, (±)-2-ethylhexanoic acid, 2-(methylamino)ethanol, perfluoro-n-heptane, and sulfolane. J Chem Eng Data, 1997, 42(6): 1021–1036CrossRefGoogle Scholar
  51. 51.
    Yoshida Y, Muroi K, Otsuka A, Saito G, Takahashi M, Yoko T. 1-ethyl-3-methylimidazolium based ionic liquids containing cyano groups: synthesis, characterization, and crystal structure. Inorg Chem, 2004, 43(4): 1458–1462CrossRefGoogle Scholar
  52. 52.
    Yoshida Y, Baba O, Saito G. Ionic liquids based on dicyanamide anion: influence of structural variations in cationic structures on ionic conductivity. J Phys Chem B, 2007, 111(18): 4742–4749CrossRefGoogle Scholar
  53. 53.
    Fredlake CP, Crosthwaite JM, Hert DG, Aki SNVK, Brennecke JF. Thermophysical properties of imidazolium-based ionic liquids. J Chem Eng Data, 2004, 49(4): 954–964CrossRefGoogle Scholar
  54. 54.
    Bonhôte P, Dias A-P, Papageorgiou N, Kalyanasundaram K, Grätzel M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem, 1996, 35(5): 1168–1178CrossRefGoogle Scholar
  55. 55.
    Ngo HL, LeCompte K, Hargens L, McEwen AB. Thermal properties of imidazolium ionic liquids. Thermochim Acta, 2000, 357–358: 97–102CrossRefGoogle Scholar
  56. 56.
    Crosthwaite JM, Muldoon MJ, Dixon JK, Anderson JL, Brennecke JF. Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J Chem Thermodyn, 2005, 37(6): 559–568CrossRefGoogle Scholar
  57. 57.
    Mahmoudi J, Lotfollahi MN. (Liquid + liquid) equilibria of (sulfolane + benzene + n-hexane), (N-formylmorpholine + benzene + n-hexane), and (sulfolane + N-formylmorpholine + benzene + n-hexane) at temperatures ranging from (298.15 to 318.15) K: Experimental results and correlation. J Chem Thermodyn, 2010, 42(4): 466–471CrossRefGoogle Scholar
  58. 58.
    Lee S, Kim H. Liquid-liquid equilibria for the ternary systems sulfolane + octane + benzene, sulfolane + octane + toluene and sulfolane + octane + p-xylene. J Chem Eng Data, 1995, 40(2): 499–503CrossRefGoogle Scholar
  59. 59.
    Mutelet F, Revelli A-L, Jaubert J-N, Sprunger LM, Acree WE, Baker GA. Partition coefficients of organic compounds in new imidazolium and tetralkylammonium based ionic liquids using inverse gas chromatography. J Chem Eng Data, 2010, 55(1): 234–242CrossRefGoogle Scholar
  60. 60.
    Domanska U, Marciniak A. Measurements of activity coefficients at infinite dilution of aromatic and aliphatic hydrocarbons, alcohols, and water in the new ionic liquid [EMIM][SCN] using GLC. J Chem Thermodyn, 2008, 40(5): 860–866CrossRefGoogle Scholar
  61. 61.
    Yan P-F, Yang M, Liu X-M, Wang C, Tan Z-C, Welz-Biermann U. Activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate [EMIM][TCB] using gas-liquid chromatography. J Chem Thermodyn, 2010, 42(6): 817–822CrossRefGoogle Scholar
  62. 62.
    Domanska U, Królikowska M, Acree Jr WE, Baker GA. Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate. J Chem Thermodyn, 2011, 43(7): 1050–1057CrossRefGoogle Scholar
  63. 63.
    Blahut A, Dohnal V, Vrbka P. Interactions of volatile organic compounds with the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate. J Chem Thermodyn, 2012, 47(0): 100–108CrossRefGoogle Scholar
  64. 64.
    Corderí S, Calvar N, Gómez E, Domínguez A. Capacity of ionic liquids [EMim][NTf2] and [EMpy][NTf2] for extraction of toluene from mixtures with alkanes: Comparative study of the effect of the cation. Fluid Phase Equilib, 2012, 315(0): 46–52CrossRefGoogle Scholar
  65. 65.
    Domanska U, Laskowska M. Measurements of activity coefficients at infinite dilution of aliphatic and aromatic hydrocarbons, alcohols, thiophene, tetrahydrofuran, MTBE, and water in ionic liquid [BMIM][SCN] using GLC. J Chem Thermodyn, 2009, 41(5): 645–650CrossRefGoogle Scholar
  66. 66.
    Domańska U, Marciniak A, Królikowska M, Arasimowicz M. Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-hexyl-3-methylimidazolium thiocyanate. J Chem Eng Data, 2010, 55(7): 2532–2536CrossRefGoogle Scholar
  67. 67.
    Hansmeier AR, Minoves Ruiz M, Meindersma GW, de Haan AB. Liquid-liquid equilibria for the three ternary systems (3-methyl-N-butylpyridinium dicyanamide + toluene + n-heptane), (1-butyl-3-methylimidazolium dicyanamide + toluene + n-heptane) and (1-butyl-3-methylimidazolium thiocyanate + toluene + n-heptane) at T = (313.15 and 348.15) K and p = 0.1 MPa. J Chem Eng Data, 2010, 55(2): 708–713CrossRefGoogle Scholar
  68. 68.
    Domańska U, Królikowska M. Measurements of activity coefficients at infinite dilution in solvent mixtures with thiocyanate-based ionic liquids using GLC technique. J Phys Chem B, 2010, 114(25): 8460–8466CrossRefGoogle Scholar
  69. 69.
    Domanska U, Królikowski M, Acree WE. Thermodynamics and activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-butyl-1-methylpyrrolidynium tetracyanoborate. J Chem Thermodyn, 2011, 43(12): 1810–1817CrossRefGoogle Scholar
  70. 70.
    Domańska U, Królikowska M. Measurements of activity coefficients at infinite dilution for organic solutes and water in the ionic liquid 1-butyl-1-methylpiperidinium thiocyanate. J Chem Eng Data, 2010, 56(1): 124–129CrossRefGoogle Scholar
  71. 71.
    Meindersma GW, de Haan AB. Conceptual process design for aromatic/aliphatic separation with ionic liquids. Chem Eng Res Des, 2008, 86(7): 745–752CrossRefGoogle Scholar
  72. 72.
    Onink SAF, Meindersma GW, de Haan AB. Ionic liquids in extraction operations: Comparison of rotating disc contactor performance between [4-mebupy]BF4 and sulfolane for aromatics extraction. In: Moyer BA, editor. ISEC 2008; 2008; Tucson, Az, USA; 2008, 1337–1342Google Scholar
  73. 73.
    Meindersma GW, Onink F, Hansmeier AR, de Haan AB. Ionic liquids as sustainable solvents in petrochemicals extraction. Prepr Symp — Am Chem Soc, Div Fuel Chem, 2010, 55(2): 53–60Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Chemical Engineering & ChemistryEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations