Science China Chemistry

, Volume 55, Issue 5, pp 718–725 | Cite as

Recent advances in flexible and stretchable electronics, sensors and power sources

  • Jeffrey B.-H. Tok
  • Zhenan BaoEmail author
Reviews Special Issue · In Honor of the 80th Birthday of Professor WANG Fosong


There has been ongoing keen interest to mold electronic devices into desired shapes and be laid on desired configurable surfaces. In specific, the ability to design materials that can bend, twist, compress and stretch repeatedly, while still able to maintain its full capability as conductors or electrodes, has led to numerous efforts to develop flexible and stretchable (bio)devices that are both technologically challenging and environmentally friendly (e.g. biodegradable). In this review, we highlight several recent significant results that have made impacts toward the field of flexible and stretchable electronics, sensors and power sources.


organic transistors flexible electronics stretchable electronics electronic skin sensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science 2010, 327, 5973: 1603–1607CrossRefGoogle Scholar
  2. 2.
    Someya T, Dodabalapur A, Huang J, See KC, Katz HE. Chemical and physical sensing by organic field-effect transistors and related devices. Adv Mater, 2010, 22(34): 3799–3811CrossRefGoogle Scholar
  3. 3.
    Kim DH, Xiao J, Song J, Huang Y, Rogers JA. Stretchable, curvilinear electronics based on inorganic materials. Adv Mater, 2010, 22(19): 2108–2124CrossRefGoogle Scholar
  4. 4.
    Sekitani T, Someya T. Stretchable, large-area organic electronics. Adv Mater, 2010, 22(20): 2228–2246CrossRefGoogle Scholar
  5. 5.
    Cao Q, Kim HS, Pimparkar N, Kulkarni JP, Wang C, Shim M, Roy K, Alam MA, Rogers JA. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature, 2008, 454(7203): 495–500CrossRefGoogle Scholar
  6. 6.
    Ko HC, Stoykovich MP, Song J, Malyarchuk V, Choi WM, Yu CJ, Geddes JB 3rd, Xiao J, Wang S, Huang Y, Rogers JA. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 2008, 454(7205): 748–753CrossRefGoogle Scholar
  7. 7.
    Jung I, Xiao J, Malyarchuk V, Lu C, Li M, Liu Z, Yoon J, Huang Y, Rogers JA. Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proc Natl Acad Sci USA, 2011, 108(5): 1788–1793CrossRefGoogle Scholar
  8. 8.
    Chun KY, Oh Y, Rho J, Ahn JH, Kim YJ, Choi HR, Baik S. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat Nanotechnol, 2010, 5(12): 853–857CrossRefGoogle Scholar
  9. 9.
    Kim RH, Kim DH, Xiao J, Kim BH, Park SI, Panilaitis B, Ghaffari R, Yao J, Li M, Liu Z, Malyarchuk V, Kim DG, Le AP, Nuzzo RG, Kaplan DL, Omenetto FG, Huang Y, Kang Z, Rogers JA. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat Mater, 2010, 9(11): 929–937CrossRefGoogle Scholar
  10. 10.
    Sekitani T, Nakajima H, Maeda H, Fukushima T, Aida T, Hata K, Someya T. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat Mater, 2009, 8(6): 494–499CrossRefGoogle Scholar
  11. 11.
    Viventi J, Kim DH, Vigeland L, Frechette ES, Blanco JA, Kim YS, Avrin AE, Tiruvadi VR, Hwang SW, Vanleer AC, Wulsin DF, Davis K, Gelber CE, Palmer L, Van der Spiegel J, Wu J, Xiao J, Huang Y, Contreras D, Rogers JA, Litt B. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci, 2011, 14(12): 1599–1605CrossRefGoogle Scholar
  12. 12.
    Viventi J, Kim DH, Moss JD, Kim YS, Blanco JA, Annetta N, Hicks A, Xiao J, Huang Y, Callans DJ, Rogers JA, Litt B. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci Transl Med, 2010, 2(24): 24ra22CrossRefGoogle Scholar
  13. 13.
    Kim DH, Lu N, Ma R, Kim YS, Kim RH, Wang S, Wu J, Won SM, Tao H, Islam A, Yu KJ, Kim TI, Chowdhury R, Ying M, Xu L, Li M, Chung HJ, Keum H, McCormick M, Liu P, Zhang YW, Omenetto FG, Huang Y, Coleman T, Rogers JA. Epidermal electronics. Science, 2011, 333(6044): 838–843CrossRefGoogle Scholar
  14. 14.
    Hu X, Krull P, de Graff B, Dowling K, Rogers JA, Arora WJ. Stretchable inorganic-semiconductor electronic systems. Adv Mater, 2011, 23(26): 2933–2936CrossRefGoogle Scholar
  15. 15.
    Lee SK, Kim BJ, Jang H, Yoon SC, Lee C, Hong BH, Rogers JA, Cho JH, Ahn JH. Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett, 2011, 11(11): 4642–4646CrossRefGoogle Scholar
  16. 16.
    Kim DH, Lu N, Ghaffari R, Kim YS, Lee SP, Xu L, Wu J, Kim RH, Song J, Liu Z, Viventi J, de Graff B, Elolampi B, Mansour M, Slepian MJ, Hwang S, Moss JD, Won SM, Huang Y, Litt B, Rogers JA. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat Mater, 2010, 10(4): 316–323CrossRefGoogle Scholar
  17. 17.
    Yu Z, Niu X, Liu Z, Pei Q. Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes. Adv Mater, 2011, 23(34): 3989–3994CrossRefGoogle Scholar
  18. 18.
    Feng C, Liu K, Wu J, Liu L, Cheng J, Zhang Y, Sun Y, Li Q, Fan S, Jiang K. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv Funct Mat, 2010, 20: 885–891CrossRefGoogle Scholar
  19. 19.
    Khan HU, Roberts ME, Johnson O, Forch R, Knoll W, Bao Z. In situ, label-free DNA detection using organic transistor sensors. Adv Mater, 2010, 22(40): 4452–4456CrossRefGoogle Scholar
  20. 20.
    Sokolov AN, Tee BC, Bettinger CJ, Tok JB, Bao Z. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications. Acc Chem Res, 2012, ASAPGoogle Scholar
  21. 21.
    Mannsfeld SC, Tee BC, Stoltenberg RM, Chen CV, Barman S, Muir BV, Sokolov AN, Reese C, Bao Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater, 2010, 9(10): 859–864CrossRefGoogle Scholar
  22. 22.
    Takahashi T, Takei K, Gillies AG, Fearing RS, Javey A. Carbon nanotube active-matrix backplanes for conformal electronics and sensors. Nano Lett, 2011, 11: 5408–5413CrossRefGoogle Scholar
  23. 23.
    Takei K, Takahashi T, Ho JC, Ko H, Gillies AG, Leu PW, Fearing RS, Javey A. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater, 2010, 9(10): 821–826CrossRefGoogle Scholar
  24. 24.
    Lipomi DJ, Vosgueritchian M, Tee BC, Hellstrom SL, Lee JA, Fox CH, Bao Z. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol, 2011, 6: 788–792CrossRefGoogle Scholar
  25. 25.
    Lipomi DJ, Bao Z. Stretchable, elastic materials and devices for solar enbergy conversion. Energy Environ Sci, 2011, 4: 3314–3328CrossRefGoogle Scholar
  26. 26.
    Ahn BY, Duoss EB, Motala MJ, Guo X, Park SI, Xiong Y, Yoon J, Nuzzo RG, Rogers JA, Lewis JA. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science, 2009, 323, 5921: 1590–1593CrossRefGoogle Scholar
  27. 27.
    Baca AJ, Yu KJ, Xiao JL, Wang SD, Yoon J, Ryu JH, Stevenson D, Nuzzo RG, Rockett AA, Huang YG, Rogers JA. Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs. Energy Environ Sci, 2010, 3: 208–211CrossRefGoogle Scholar
  28. 28.
    Lipomi DJ, Tee BC, Vosgueritchian M, Bao Z. Stretchable organic solar cells. Adv Mater, 2011, 23(15): 1771–1775CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Chemical EngineeringStanford UniversityStanfordUSA

Personalised recommendations