Science China Chemistry

, Volume 54, Issue 12, pp 1920–1925 | Cite as

The effect of solvent in evaporation-induced self-assembly: A case study of benzene periodic mesoporous organosilica

  • WenDong Wang
  • Daniel Faulkner
  • Jonathon Moir
  • Geoffrey A. Ozin
Articles

Abstract

Volatile organic solvents were considered to have little influence on the synthesis of mesostructured materials through evaporation-induced self-assembly (EISA), because upon evaporation they leave the sol and hence do not interfere with the self-assembly process. We show here that the choice of solvent is crucial in the synthesis of thin films of phenylene-bridged periodic mesoporous organosilica (benzene PMO). Methanol is found to be a better solvent for the synthesis of thin films, whereas ethanol favors the formation of (HO)3Si-C6H4-Si(OH)3 crystals, the identity and structure of which is established by X-ray diffraction. A ternary reactant composition diagram is designed to visualize the relationship among multiple synthesis experiments and to guide the interpretation of experimental results and optimization of the quality of the periodic mesoporous organosilica film. Our study highlights the importance of solvent choice, a factor often neglected in EISA. We expect it to inspire researchers to explore the effect of solvent in designing the synthesis of mesoporous materials.

Keywords

mesoporous materials periodic mesoporous organosilica evaporation induced self assembly thin films 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11426_2011_4457_MOESM1_ESM.pdf (762 kb)
Supplementary material, approximately 761 KB.

References

  1. 1.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397): 710–712CrossRefGoogle Scholar
  2. 2.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc, 1992, 114(27): 10834–10843CrossRefGoogle Scholar
  3. 3.
    Yang H, Kuperman A, Coombs N, Mamiche-Afara S, Ozin GA. Synthesis of oriented films of mesoporous silica on mica. Nature, 1996, 379(6567): 703–705CrossRefGoogle Scholar
  4. 4.
    Aksay IA, Trau M, Manne S, Honma I, Yao N, Zhou L, Fenter P, Eisenberger PM, Gruner SM. Biomimetic pathways for assembling inorganic thin films. Science, 1996, 273(5277): 892–898CrossRefGoogle Scholar
  5. 5.
    Yang H, Coombs N, Sokolov I, Ozin GA. Free-standing and oriented mesoporous silica films grown at the air-water interface. Nature, 1996, 381(6583): 589–592CrossRefGoogle Scholar
  6. 6.
    Lu Y, Ganguli R, Drewien CA, Anderson MT, Brinker CJ, Gong W, Guo Y, Soyez H, Dunn B, Huang MH, Zink JI. Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating. Nature, 1997, 389: 364–368CrossRefGoogle Scholar
  7. 7.
    Brinker CJ, Lu Y, Sellinger A, Fan H. Evaporation-induced self-assembly: Nanostructures made easy. Adv Mater, 1999, 11: 579–585CrossRefGoogle Scholar
  8. 8.
    Lu Y, Fan H, Stump A, Ward TL, Rieker T, Brinker CJ, Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature, 1999, 398: 223–226CrossRefGoogle Scholar
  9. 9.
    Grosso FC, de AA Soler-Illia GJ, Crepaldi EL, Amenitsch H, Brunet-Bruneau A, Bourgeois A, Sanchez C, Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv Funct Mater, 2004, 14: 309–322CrossRefGoogle Scholar
  10. 10.
    Doshi DA, Huesing NK, Lu M, Fan H, Lu Y, Simmons-Potter K, Potter BG, Hurd AJ, Brinker CJ. Optically defined multifunctional patterning of photosensitive thin-film silica mesophases. Science, 2000, 290: 107–111CrossRefGoogle Scholar
  11. 11.
    Fan H, Lu Y, Stump A, Reed ST, Baer T, Schunk R, Perez-Luna V, Lopez GP, Brinker CJ. Rapid prototyping of patterned functional nanostructures. Nature, 2000, 405: 56–60CrossRefGoogle Scholar
  12. 12.
    Yang P, Wirnsberger G, Huang HC, Cordero SR, McGehee MD, Scott B, Deng T, Whitesides GM, Chmelka BF, Buratto SK, Stucky GD. Mirrorless lasing from mesostructured waveguides patterned by soft lithography. Science, 2000, 287: 465–467CrossRefGoogle Scholar
  13. 13.
    Hatton BD, Landskron K, Whitnall W, Perovic DD, Ozin GA. Spin-coated periodic mesoporous organosilica thin films — Towards a new generation of low-dielectric-constant materials. Adv Funct Mater, 2005, 15: 823–829CrossRefGoogle Scholar
  14. 14.
    Landskron K, Hatton BD, Perovic DD, Ozin GA. Periodic mesoporous organosilicas containing interconnected [Si(CH2)]3 rings. Science, 2003, 302: 266–269CrossRefGoogle Scholar
  15. 15.
    Wang W, Grozea D, Kim A, Perovic DD, Ozin GA. Vacuum-assisted aerosol deposition of a low-dielectric-constant periodic mesoporous organosilica film. Adv Mater, 2010, 22: 99–102CrossRefGoogle Scholar
  16. 16.
    Wang WD, Grozea D, Kohli S, Perovic DD, Ozin GA. Water repellent periodic mesoporous organosilicas. ACS Nano, 2011, 5: 1267–1275CrossRefGoogle Scholar
  17. 17.
    Grosso D, Babonneau F, Albouy PA, Amenitsch H, Balkenende AR, Brunet-Bruneau A, Rivory J. An in situ study of mesostructured CTAB—silica film formation during dip coating using time-resolved SAXS and interferometry measurements. Chem Mater, 2002, 14: 931–939CrossRefGoogle Scholar
  18. 18.
    Besson S, Gacoin T, Ricolleau C, Jacquiod C, Boilot JP. Phase diagram for mesoporous CTAB-silica films prepared under dynamic conditions. J Mater Chem, 2003, 13: 404–409CrossRefGoogle Scholar
  19. 19.
    Gibaud A, Grosso D, Smarsly B, Baptiste A, Bardeau JF, Babonneau F, Doshi DA, Chen Z, Brinker CJ, Sanchez C. Evaporation-controlled self-assembly of silica surfactant mesophases. J. Physl Chem B, 2003, 107: 6114–6118CrossRefGoogle Scholar
  20. 20.
    Cagnol F, Grosso D, Soler-Illia GJdAA, Crepaldi EL, Babonneau F, Amenitsch H, Sanchez C. Humidity-controlled mesostructuration in CTAB-templated silica thin film processing. The existence of a modulable steady state. J Mater Chem, 2003, 13: 61–66Google Scholar
  21. 21.
    Innocenzi P, Falcaro P, Grosso D, Babonneau F. Order—disorder transitions and evolution of silica structure in self-assembled mesostructured silica films studied through FTIR spectroscopy. J Phys Chem B, 2003, 107: 4711–4717CrossRefGoogle Scholar
  22. 22.
    Inagaki S, Guan S, Fukushima Y, Ohsuna T, Terasaki O. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. J Am Chem Soc, 1999, 121: 9611–9614CrossRefGoogle Scholar
  23. 23.
    Melde BJ, Holland BT, Blanford CF, Stein A. Mesoporous sieves with unified hybrid inorganic/organic frameworks. Chem Mater, 1999, 11: 3302–3308CrossRefGoogle Scholar
  24. 24.
    Asefa T, MacLachlan MJ, Coombs N, Ozin GA. Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature, 1999, 402: 867–871Google Scholar
  25. 25.
    Fujita S, Inagaki S. Self-organization of organosilica solids with molecular-scale and mesoscale periodicities. Chem Mater, 2008, 20: 891–908CrossRefGoogle Scholar
  26. 26.
    Goto Y, Mizoshita N, Ohtani O, Okada T, Shimada T, Tani T, Inagaki S. Synthesis of mesoporous aromatic silica thin films and their optical properties. Chem Mater, 2008, 20: 4495–4498CrossRefGoogle Scholar
  27. 27.
    Mizoshita N, Ikai M, Tani T, Inagaki S. Hole-transporting periodic mesostructured organosilica. J Am Chem Soc, 2009, 131: 14225–14227CrossRefGoogle Scholar
  28. 28.
    Inagaki S, Ohtani O, Goto Y, Okamoto K, Ikai M, Yamanaka KI, Tani T, Okada T. Light harvesting by a periodic mesoporous organosilica chromophore. Angew Chem Int Ed, 2009, 48: 4042–4046CrossRefGoogle Scholar
  29. 29.
    Takeda H, Goto Y, Maegawa Y, Ohsuna T, Tani T, Matsumoto K, Shimada T, Inagaki S. Visible-light-harvesting periodic mesoporous organosilica. Chem Commun, 2009: 6032–6034Google Scholar
  30. 30.
    Cerveau G, Corriu RJP, Dabiens B, Le Bideau J. Synthesis of stable organo(bis-silanetriols): X-ray powder structure of 1,4-bis (trihydr-oxysilyl)benzene. Angew Chem Int Ed, 2000, 39: 4533–4537CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • WenDong Wang
    • 1
  • Daniel Faulkner
    • 1
    • 2
  • Jonathon Moir
    • 1
  • Geoffrey A. Ozin
    • 1
  1. 1.Materials Chemistry Research Group, Department of ChemistryUniversity of TorontoTorontoCanada
  2. 2.Department of Materials Science & EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations