Advertisement

Science China Chemistry

, Volume 54, Issue 12, pp 1962–1973 | Cite as

FEARCF a multidimensional free energy method for investigating conformational landscapes and chemical reaction mechanisms

  • Kevin J. NaidooEmail author
Articles

Abstract

The development and implementation of a computational method able to produce free energies in multiple dimensions, descriptively named the free energies from adaptive reaction coordinate forces (FEARCF) method is described in this paper. While the method can be used to calculate free energies of association, conformation and reactivity here it is shown in the context of chemical reaction landscapes. A reaction free energy surface for the Claisen rearrangement of chorismate to prephenate is used as an illustration of the method’s efficient convergence. FEARCF simulations are shown to achieve flat histograms for complex multidimensional free energy volumes. The sampling efficiency by which it produces multidimensional free energies is demonstrated on the complex puckering of a pyranose ring, that is described by a three dimensional W(θ 1, θ 2, θ 3) potential of mean force.

Keywords

free energy calculations reaction dynamics reaction surfaces multidimensional free energy surfaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zewail AH. Femtochemistry: Atomic-scale dynamics of the chemical bond Zewail A H. 2000, J Phys Chem A, 2000, 104: 5660–5694CrossRefGoogle Scholar
  2. 2.
    Schramm VL. Enzymatic transition states and transition state analog design. Ann Rev Biochem, 1998, 67: 693–720CrossRefGoogle Scholar
  3. 3.
    Bash PA, Ho LL, MacKerell ADJ, Levine D, Hallstrom P. Progress toward chemical accuracy in the computer simulation of condensed phase reactions. Proc Natl Acad Sci USA, 1996, 93: 3698–3703CrossRefGoogle Scholar
  4. 4.
    Beveridge DL. Free-energy via molecular simulation-applications to chemical and biomolecular systems. Ann Rev Biophys Biophys Chem, 1989, 18: 431–492CrossRefGoogle Scholar
  5. 5.
    Crim, Chemical reaction dynamics. Proc Natl Acad Sci USA, 2008, 105(35): 12647–12648Google Scholar
  6. 6.
    Mezei M. Adaptive umbrella sampling: self-consistent determination of the non-boltzmann bias. J Comput Phys, 1987, 68: 237–248CrossRefGoogle Scholar
  7. 7.
    Torrie GM, Valleau JP. Monte-Carlo free energy estimates using non-Boltzmann sampling. Application to the subcritical Lennard-Jones fluid. Chem Phys Lett, 1974, 28(4): 578–581Google Scholar
  8. 8.
    Torrie GM, Valleau JP. Nonphysical sampling distributions in monte carlo free-energy estimation: umbrella sampling. J Comp Phys, 1977, 23: 187–199CrossRefGoogle Scholar
  9. 9.
    Darve E, Pohorille A. Calculating free energies using average force. J Chem Phys, 2001, 115(20): 9169–9183CrossRefGoogle Scholar
  10. 10.
    Darve E, Rodríguez-Gómez D, Pohorille A. Adaptive biasing force method for scalar and vector free energy calculations. J Chem Phys, 2008, 128: 144120 (1–13)CrossRefGoogle Scholar
  11. 11.
    Naidoo KJ, Brady JW. Calculation of the ramachandran potential of mean force for a disaccharide in aqueous solution. J Am Chem Soc, 1999, 121(10): 2244–2252CrossRefGoogle Scholar
  12. 12.
    Ferrenberg AM, Swendsen RH. New monte carlo technique for studying phase transitions. Phys Rev Lett, 1988, 61(23): 2635–2638CrossRefGoogle Scholar
  13. 13.
    Kuttel MM, Brady JW, Naidoo KJ. Carbohydrate solution simulations: Producing a force field with experimentally consistent primary alcohol rotational frequencies and populations. J Comp Chem, 2002, 23(13): 1236–1243CrossRefGoogle Scholar
  14. 14.
    Kuttel MM, Naidoo KJ. Free energy surfaces for the alpha(1–4)-glycosidic linkage: Implications for polysaccharide solution structure and dynamics. J Phys Chem B, 2005, 109: 7468–7474CrossRefGoogle Scholar
  15. 15.
    Rajamani R., Naidoo KJ, Gao J. Implementation of an adaptive umbrella sampling method for the calculation of multidimensional potential of mean force of chemical reactions in solution. J Comp Chem, 2003, 24: 1775–1781CrossRefGoogle Scholar
  16. 16.
    Barnett CB, Naidoo KJ. Free Energies from Adaptive Reaction Coordinate Forces (FEARCF): An application to ring puckering Mol Phys, 2009, 107(8–12): 1243–1250CrossRefGoogle Scholar
  17. 17.
    Strümpfer J, Naidoo KJ. Computing free energy hypersurfaces for anisotropic intermolecular associations. J Comp Chem, 2010, 31(2): 308–316Google Scholar
  18. 18.
    Wang FG, Landau DP. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys Rev Lett, 2001, 86(10): 2050–2053CrossRefGoogle Scholar
  19. 19.
    Wang FG, Landau DP. Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram. Phys Rev E, 2001, 64(5)Google Scholar
  20. 20.
    Laio A, Parrinello M. Escaping free-energy minima. Proc Natl Acad Sci, 2002, 99(20): 12562–12566CrossRefGoogle Scholar
  21. 21.
    Berkowitz M, Karim OA, McCammon JA, Rossky PJ. Sodium chloride ion pair interaction in water:computer simulation. Chem Phys Lett, 1984, 105(6): 577–580CrossRefGoogle Scholar
  22. 22.
    Belch AC, Berkowitz M, McCammon JA. Solvation structure of a sodium chloride ion pair in water. J Am Chem Soc, 1986, 108: 1755–1761CrossRefGoogle Scholar
  23. 23.
    Trzesniak D, Kunz APE, van Gunsteren WF. A comparison of methods to compute the potential of mean force. Chemphyschem, 2007, 8(1): 162–169CrossRefGoogle Scholar
  24. 24.
    Khavrutskii IV, Dzubiella J, McCammon JA. Computing accurate potentials of mean force in electrolyte solutions with the generalized gradient-augmented harmonic Fourier beads method. J Chem Phys, 2008, 128(4): 044106–044113CrossRefGoogle Scholar
  25. 25.
    Bartels C, Karplus M. Multidimensional adaptive umbrella sampling: applications to main chain and side chain peptide conformation. J Comp Chem, 1997, 18(12): 1450–1462CrossRefGoogle Scholar
  26. 26.
    Bartels C, Karplus M. Probability distributions for complex systems: Adaptive umbrella sampling of the potential energy. J Phys Chem B, 1998, 102: 865–880CrossRefGoogle Scholar
  27. 27.
    Bouzida D, Kumar S, Swendsen RH. Efficient Monte Carlo methods for the computer simulation of biological molecules. Phys Rev A, 1992, 45(12): 8894CrossRefGoogle Scholar
  28. 28.
    Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM. The Weighted Histogram analysis method for free-energy calculations on biomolecules. I. The Method. J Comput Chem, 1992, 13: 1011–1021Google Scholar
  29. 29.
    Kumar S, Payne PW, Vasquez M. Method for free-energy calculations using iterative techniques. J Comput Chem, 1996, 17(10): 1269–1275CrossRefGoogle Scholar
  30. 30.
    Ferrenberg AM, Swendsen RH. Optimized monte carlo data analysis. Phys Rev Lett, 1989, 63(12): 1195–1198CrossRefGoogle Scholar
  31. 31.
    Bartels C, Schaefer M, Karplus M. Determination of equilibrium properties of biomolecular systems using multidimentional adaptive umbrella sampling. J Chem Phys, 1999, 111(178): 8048–8067CrossRefGoogle Scholar
  32. 32.
    Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA. Multidimensional free-energy calculations using the weighted histo-gram analysis method. J Comput Chem, 1995, 16(11): 1339–1350CrossRefGoogle Scholar
  33. 33.
    Ghosh I, McCammon JA. Sidechain rotational isomerization in proteins: dynamic simulation with solvent surroundings. Biophys J, 1987, 51: 637–641CrossRefGoogle Scholar
  34. 34.
    Ma SK. MD simulations and Poincare recurrence time. J Stat Phys, 1981, 26: 221CrossRefGoogle Scholar
  35. 35.
    Brooks BR, Brooks CL, Mackerell Jr. AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M. CHARMM: The biomolecular simulation program. J Comp Chem, 2009, 30(10): 1545–1614CrossRefGoogle Scholar
  36. 36.
    Brooks BR, Hodoscek M. Parallelization of CHARMM for MIMD machines. Chemical Design Automation News, 1992, 7: 16Google Scholar
  37. 37.
    Warshel A, Levitt M. Theoretical studies of enzymic reactions-dielectric, electrostatic and steric stabilization of carbonium-ion in reaction of lysozyme. J Mol Biol, 1976, 103: 227CrossRefGoogle Scholar
  38. 38.
    Bash P, Fields M, Karplus M. Free energy pertubation method for chemical reactions in the condensed phase: A dynamical approach based on the combined quantum and molecular mechanical potential. J Am Chem Soc, 1987, 109(26): 8092–8094CrossRefGoogle Scholar
  39. 39.
    Field MJ, Bash PA, Karplus M. A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J Comput Chem, 1990, 11(6): 700–733CrossRefGoogle Scholar
  40. 40.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc, 1985, 107: 3902–3909Google Scholar
  41. 41.
    Yonemoto EH, Riley RL, Kim Y II, Atherton SJ, Schmehl RH, Mallouk TE. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. [Erratum to document cited in CA103(2):11627f]. J Am Chem Soc, 1993, 115(12): 5348CrossRefGoogle Scholar
  42. 42.
    Stewart JJP. Optimization of parameters for semiempirical methods. I. Method. J Comput Chem, 1989, 10(2): 209–220CrossRefGoogle Scholar
  43. 43.
    McNamara JP, Muslim AM, Abdel-Aal H, Wang H, Mohr M, Hillier IH, Bryce RA. Towards a quantum mechanical force field for carbohydrates: A reparametrized semi-empirical MO approach. Chem Phys Lett, 2004, 394: 429–436CrossRefGoogle Scholar
  44. 44.
    Barnett CB, Naidoo KJ. Stereoelectronic and solvation effects deter-mine hydroxymethyl conformational preferences in monosaccharides. J Phys Chem B, 2008, 112: 15450–15459CrossRefGoogle Scholar
  45. 45.
    Cui Q, Elstner M, Kaxiras E, Frauenheim T, Karplus M. A QM/MM implementation of the self-consistent charge density functional tight binding (SCC-DFTB) method. J Phys Chem B, 2001, 105: 569–585CrossRefGoogle Scholar
  46. 46.
    Fernandes K, Naidoo KJ. Complete catalytic and non-catalytic reaction surface of the chorismate to prephenate isomerisation. Unpublished, 2011Google Scholar
  47. 47.
    Roux B. The calculation of the potential of mean force using computer simulations. Comput Phys Comm, 1995, 91(1–3): 275–282CrossRefGoogle Scholar
  48. 48.
    Press W, Teukolsky SA, Vetterling W, Flannery B. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. New York: Cambridge University Press, 1992Google Scholar
  49. 49.
    Nam KH, Gao JL, York DM. Quantum mechanical/molecular mechanical simulation study of the mechanism of hairpin ribozyme catalysis. J Am Chem Soc, 2008, 130(14): 4680–4691CrossRefGoogle Scholar
  50. 50.
    Ruiz-Pernia JJ, Garcia-Viloca M, Bhattacharyya S, Gao J, Truhlar DG. Critical role of substrate conformational change in the proton transfer process catalyzed by 4-oxalocrotonate tautomerase. J Am Chem Soc, 2009, 131(7): 2687–2698CrossRefGoogle Scholar
  51. 51.
    Ma S, Devi-Kesavan LS, Gao J. Molecular dynamics simulations of the catalytic pathway of a cysteine protease: A combined QM/MM study of human cathepsin K. J Am Chem Soc, 2007, 129(44): 13633–13645CrossRefGoogle Scholar
  52. 52.
    Davies GJ, Ducros VMA, Varrot A, Zechel DL. Mapping the conformational itinerary of beta-glycosidases by X-ray crystallography. Biochemical Society Transactions, 2003, 31: 523–527CrossRefGoogle Scholar
  53. 53.
    Berces A, Enright G, Nukada T, Whitfield DM. The conformational origin of the barrier to the formation of neighboring group assistance in glycosylation reactions: A dynamical density functional theory study. J Am Chem Soc, 2001, 123: 5460–5464CrossRefGoogle Scholar
  54. 54.
    Cremer D, Pople JA. A general definition of Ring Puckering Coordinates. J Am Chem Soc, 1975, 96(6): 1354–1358CrossRefGoogle Scholar
  55. 55.
    Hill AD, Reilly PJ. Puckering coordinates of monocyclic rings by triangular decomposition. J Chem Inf Model, 2007, 47(3): 1031–1035CrossRefGoogle Scholar
  56. 56.
    Barnett CB, Naidoo KJ. Presented at the Theory and Applications of Computational Chemistry 2008, Shanghai, ChinaGoogle Scholar
  57. 57.
    Barnett CB, Naidoo KJ. Ring puckering: A metric for evaluating the accuracy of AM1, PM3, PM3CARB-1 and SCC-DFTB carbohydrate QM/MM simulations. J Phys Chem B, 2010, 114: 17142–17154CrossRefGoogle Scholar
  58. 58.
    Yang Y, Yu H, York D, Cui Q, Elstner M. Extension of the self-consistent-charge density-functional tight-binding method: third-order expansion of the density functional theory total energy and introduction of a modified effective coulomb interaction. J Phys Chem A, 2007, 111: 10861–10873CrossRefGoogle Scholar
  59. 59.
    Shallenberger RS. The conformational structure of the sugars in Advanced sugar chemistry. 1982Google Scholar
  60. 60.
    Barnett CB, Wilkinson KA, Naidoo KJ. Pyranose ring transition state is derived from cellobiohydrolase I induced conformational stability and glycosidic bond polarization. J Am Chem Soc, 2010, 132(37): 12800–12803CrossRefGoogle Scholar
  61. 61.
    Barnett CB, Wilkinson KA, Naidoo KJ. Molecular details from computational reaction dynamics for the Cellobidrydrolase I glycosylation reaction. J Am Chem Soc, 2011, doi: 10.1021/ja206842jGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Scientific Computing Research Unit and Department of ChemistryUniversity of Cape TownCape TownSouth Africa

Personalised recommendations