Science China Chemistry

, Volume 54, Issue 11, pp 1726–1734 | Cite as

Novel supramolecular organocatalysts of hydroxyprolinamide based on calix[4]arene scaffold for the enantioselective Biginelli reaction

  • ZhengYi Li
  • HuaiJie Xing
  • GuoLi Huang
  • XiaoQiang Sun
  • JuLi Jiang
  • LeYong Wang


A series of novel supramolecular organocatalysts of hydroxyprolinamide based on the upper rim of calix[4]arene scaffold have been developed to catalyze enantioselective multi-component Biginelli reaction. Under the optimal conditions, the reactions occurred with moderate-to-excellent enantioselectivities (up to 98% ee). A plausible transition state constructed by the supramolecular interaction of hydrogen bond and cation-π between catalysts and substrates has been proposed.


supramolecular organocatalyst calix[4]arene hydroxyprolinamide enantioselective Biginelli reaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schreiner PR. Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem Soc Rev, 2003, 32: 289–296CrossRefGoogle Scholar
  2. 2.
    Cacciapaglia, R, Stefano SD, Mandolini L. Effective molarities in supramolecular catalysis of two-substrate reactions. Acc Chem Res, 2004, 37: 113–122CrossRefGoogle Scholar
  3. 3.
    Kovbasyuk L, Krämer R. Allosteric supramolecular receptors and catalysts. Chem Rev, 2004, 104: 3161–3187CrossRefGoogle Scholar
  4. 4.
    Gianneschi NC, Masar III MS, Mirkin CA. Development of a coordination chemistry-based approach for functional supramolecular structures. Acc Chem Res, 2005, 38: 825–837CrossRefGoogle Scholar
  5. 5.
    Hoogenboom R, Schubert US. The use of (metallo-)supramolecular initiators for living/controlled polymerization techniques. Chem Soc Rev, 2006, 35: 622–629CrossRefGoogle Scholar
  6. 6.
    Hattori G, Hori T, Miyake Y, Nishibayashi Y. Design and preparation of a chiral ligand based on a pseudorotaxane skeleton: Application to rhodium-catalyzed enantioselective hydrogenation of enamides. J Am Chem Soc, 2007, 129: 12930–12931CrossRefGoogle Scholar
  7. 7.
    Laungani AC, Slattery JM, Krossing I, Breit B. Supramolecular bidentate ligands by metal-directed in situ formation of antiparallel b-sheet structures and application in asymmetric catalysis. Chem Eur J, 2008, 14: 4488–4502CrossRefGoogle Scholar
  8. 8.
    Clarke ML, Fuentes JA. Self-assembly of organocatalysts: Fine-tuning organocatalytic reactions. Angew Chem Int Ed, 2007, 46: 930–933CrossRefGoogle Scholar
  9. 9.
    Reis Ö, Eymur S, Reis B, Demir AS. Direct enantioselective aldol reactions catalyzed by a proline-thiourea host-guest complex. Chem Commun, 2009, 1088–1090Google Scholar
  10. 10.
    Böhmer V. Calixarenes, macrocycles with (almost) unlimited possibilities. Angew Chem Int Ed, 1995, 34: 713–745CrossRefGoogle Scholar
  11. 11.
    Ikeda A, Shinkai S. Novel cavity design using calix[n]arene skeletons: Toward molecular recognition and metal binding. Chem Rev, 1997, 97: 1713–1734CrossRefGoogle Scholar
  12. 12.
    Casnati A, Sansone F, Ungaro R. Peptido- and glycocalixarenes: Playing with hydrogen bonds around hydrophobic cavities. Acc Chem Res, 2003, 36: 246–254CrossRefGoogle Scholar
  13. 13.
    Oueslati I. Calix(aza)crowns: Synthesis, recognition, and coordination. Tetrahedron, 2007, 63: 10840–10851CrossRefGoogle Scholar
  14. 14.
    Homden DM, Redshaw C. The use of calixarenes in metal-based catalysis. Chem Rev, 2008, 108: 5086–5130CrossRefGoogle Scholar
  15. 15.
    Sliwa W, Deska M. Calixarene complexes with soft metal ions. ARKIVOC, 2008, i: 87–127Google Scholar
  16. 16.
    Xu ZX, Li GK, Chen CF, Huang ZT. Inherently chiral calix[4]arenebased bifunctional organocatalysts for enantioselective aldol reactions. Tetrahedron, 2008, 64: 8668–8675CrossRefGoogle Scholar
  17. 17.
    Miao R, Xu ZX, Huang ZT, Chen CF. Enantiopure inherently chiral calix[4]arene derivatives containing quinolin-2-yl-methanol moiety: Synthesis and application in the catalytic asymmetric addition of diethylzinc to benzaldehyde. Sci Chin Ser B Chem, 2009, 52: 505–512CrossRefGoogle Scholar
  18. 18.
    Li ZY, Chen JW, Liu Y, Xia W, Wang L. The use of calixarenes in asymmetric catalysis. Curr Org Chem, 2011, 15: 39–61CrossRefGoogle Scholar
  19. 19.
    Li ZY, Chen JW, Wang L, Pan Y. Highly enantioselective direct aldol reactions catalyzed by proline derivatives based on a calix[4]arene scaffold in the presence of water. Synlett, 2009, 2356–2360Google Scholar
  20. 20.
    Li ZY, Lu CX, Huang G, Ma JJ, Sun H, Wang L, Pan Y. Novel prolinamide organocatalysts based on calix[4]arene scaffold for the enantioselective direct aldol reaction. Lett Org Chem, 2010, 7: 461–466CrossRefGoogle Scholar
  21. 21.
    Biginelli P. Aldehyde-urea derivatives of aceto- and oxaloacetic acids. Gazz Chim Ital, 1893, 23: 360–413Google Scholar
  22. 22.
    Atwal KS, Swanson BN, Unger SE, Floyd DM, Moreland S, Hedberg A, O’Reilly BC. Dihydropyrimidine calcium channel blockers. 3.3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarbo xylic acid esters as orally effective antihypertensive agents. J Med Chem, 1991, 34: 806–811CrossRefGoogle Scholar
  23. 23.
    Rovnyak GC, Kimball SD, Beyer B, Cucinotta G, DiMarco JD, Gougoutas J, Hedberg A, Malley M, McCarthy JP, Zhang R, Moreland S. Calcium entry blockers and activators: Conformational and structural determinants of dihydropyrimidine calcium channel modulators. J Med Chem, 1995, 38: 119–129CrossRefGoogle Scholar
  24. 24.
    Kappe CO. Biologically active dihydropyrimidones of the Biginellitype — A literature survey. Eur J Med Chem, 2000, 35: 1043–1052CrossRefGoogle Scholar
  25. 25.
    Kappe CO. The generation of dihydropyrimidine libraries utilizing biginelli multicomponent chemistry. QSAR Comb Sci, 2003, 22: 630–645CrossRefGoogle Scholar
  26. 26.
    Sadanandam YS, Shetty MM, Diwan PV. Synthesis and biological evaluation of new 3,4-dihydro-6-methyl-5-N-methyl-carbamoyl-4-(substituted phenyl)-2(1H)pyrimidinones and pyrimidinethiones. Eur J Med Chem, 1992, 27: 87–92CrossRefGoogle Scholar
  27. 27.
    Horton DA, Bourne GT, Smythe ML. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem Rev, 2003, 103: 893–930CrossRefGoogle Scholar
  28. 28.
    Xin J, Chang L, Hou Z, Shang D, Liu X, Feng X. An enantioselective biginelli reaction catalyzed by a simple chiral secondary amine and achiral Brønsted acid by a dual-activation route. Chem Eur J, 2008, 14: 3177–3181CrossRefGoogle Scholar
  29. 29.
    Goss JM, Schaus SE. Enantioselective synthesis of SNAP-7941: Chiral dihydropyrimidone inhibitor of MCH1-R. J Org Chem, 2008, 73: 7651–7656CrossRefGoogle Scholar
  30. 30.
    González-Olvera R, Demare P, Regla I, Juaristi E. Application of (1S,4S)-2,5-diazabicyclo[2.2.1]heptane derivatives in asymmetric organocatalysis: The biginelli reaction. ARKIVOC, 2008, vi: 61–72Google Scholar
  31. 31.
    Yadav LDS, Rai A, Rai VK, Awasthi C. Chiral ionic liquid-catalyzed Biginelli reaction: Stereoselective synthesis of polyfunctionalized perhydropyrimidines. Tetrahedron, 2008, 64: 1420–1429CrossRefGoogle Scholar
  32. 32.
    Gong LZ, Chen XH, Xu XY. Asymmetric organocatalytic biginelli reactions: A new approach to quickly access optically active 3,4-dihydropyrimidin-2-(1H)-ones. Chem Eur J, 2007, 13: 8920–8926CrossRefGoogle Scholar
  33. 33.
    Chen XH, Xu XY, Liu H, Cun LF, Gong LZ. Highly enantioselective organocatalytic biginelli reaction. J Am Chem Soc, 2006, 128: 14802–14803CrossRefGoogle Scholar
  34. 34.
    Dondoni A, Massi A. Design and synthesis of new classes of heterocyclic C-glycoconjugates and carbon-linked sugar and heterocyclic amino acids by asymmetric multicomponent reactions (AMCRs). Acc Chem Res, 2006, 39: 451–463CrossRefGoogle Scholar
  35. 35.
    Huang YJ, Yang FY, Zhu CJ. Highly enantioseletive biginelli reaction using a new chiral ytterbium catalyst: Asymmetric synthesis of dihydropyrimidines. J Am Chem Soc, 2005, 127: 16386–16387CrossRefGoogle Scholar
  36. 36.
    Muñoz-Muñiz O, Juaristi E. An enantioselective approach to the Biginelli dihydropyrimidinone condensation reaction using CeCl3 and InCl3 in the presence of chiral ligands. ARKIVOC, 2003, xi: 16–26Google Scholar
  37. 37.
    Dondoni A, Massi A, Sabbatini S, Bertolasi V. Three-component biginelli cyclocondensation reaction using C-glycosylated substrates. Preparation of a collection of dihydropyrimidinone glycoconjugates and the synthesis of C-glycosylated monastrol analogues. J Org Chem, 2002, 67: 6979–6994CrossRefGoogle Scholar
  38. 38.
    Li ZY, Ma JJ, Chen JW, Pan Y, Jiang J, Wang L. High-performance liquid chromatography study of the nitration course of tetrabutoxycalix[4]arene at the upper rim: Determination of the optimum conditions for the preparation of 5,11,17-trinitro-25,26,27,28-tetrabutoxycalix[4]arene. Chin J Chem, 2009, 27: 2031–2036CrossRefGoogle Scholar
  39. 39.
    Shaabani A, Bazgir A, Teimouri F. Ammonium chloride-catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solventfree conditions. Tetrahedron Lett, 2003, 44: 857–859CrossRefGoogle Scholar
  40. 40.
    Ishihara S, Takeoka S. Host-guest assembly of pyridinium-conjugated calix[4]arene via cation-π interaction. Tetrahedron Lett, 2006, 47: 181–184CrossRefGoogle Scholar
  41. 41.
    Pappalardo S, Villari V, Slovak S, Cohen Y, Gattuso G, Notti A, Pappalardo A, Pisagatti I, Parisi MF. Counterion-dependent protondriven self-assembly of linear supramolecular oligomers based on amino-calix[5]arene building blocks. Chem Eur J, 2007, 13: 8164–8173CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical EngineeringChangzhou UniversityChangzhouChina
  2. 2.Institute of Chemical Biology and Drug Innovation, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina

Personalised recommendations