Advertisement

Science China Chemistry

, Volume 54, Issue 7, pp 1051–1063 | Cite as

Towards a universal organogelator: A general mixing approach to fabricate various organic compounds into organogels

  • PengFei Duan
  • YuanGang Li
  • Jian Jiang
  • TianYu Wang
  • MingHua Liu
Articles

Abstract

Low-molecular-weight organogels (LMOG) have been attracting a surge interest in fabricating soft materials. Although the finding of the gelator molecules has been developed from serendipity to objective design, the achievement of the gelator molecules still needs good design and tedious organic synthesis. In this paper, we proposed a simple and general mixing approach to get the organogel for nearly all the organic compounds and even soluble nanoparticles without any modification. We have designed a universal gelator molecule, which forms organogels with more than 40 kinds of organic solvents from aploar to polar solvents. More interestingly, when other organic compounds or even nanomaterials, which are soluble in certain organic solvents, are mixed with this gelator molecule, they can form organogels no matter whether the individual compounds could form organogel or not. This method is applicable to nearly all kinds of soluble organic compounds and opens an efficient and universal way to fabricate gel materials.

Keywords

organogel hybrid system supramolecular chemistry self-assembly soft matter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Terech P, Weiss RG. Eds. Molecular Gels: Materials with Self-Assembled Fibrllar Networks. Dordrecht: Springer, 2006Google Scholar
  2. 2.
    Terech P, Weiss RG. Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev, 1997, 97: 3133–3159CrossRefGoogle Scholar
  3. 3.
    Estroff LA, Hamilton AD. Water gelation by small organic molecules. Chem Rev, 2004, 104: 1201–1217CrossRefGoogle Scholar
  4. 4.
    Mohan SRK, Hamachi I. Synthesis of new supramolecular polymers based on glycosylated amino acid and their applications. Curr Org Chem, 2005, 9: 491–502Google Scholar
  5. 5.
    Abdallah DJ, Weiss RG. Organogels and low molecular mass organic gelators. Adv Mater, 2000, 12: 1237–1247CrossRefGoogle Scholar
  6. 6.
    Ajayaghosh A, Praveen VK. pi-organogels of self-assembled p-phenylenevinylenes: Soft materials with distinct size, shape, and functions. Acc Chem Res, 2007, 40: 644–656CrossRefGoogle Scholar
  7. 7.
    Shimizu T, Masuda M, Minamikawa H. Supramolecular nanotube architectures based on amphiphilic molecules. Chem Rev, 2005, 105: 1401–1443CrossRefGoogle Scholar
  8. 8.
    Hirst AR, Smith DK, Feiters MC, Geurts HPM, Wright AC. Two-component dendritic gels: Easily tunable materials. J Am Chem Soc, 2003, 125: 9010–9011CrossRefGoogle Scholar
  9. 9.
    van Bommel KJC, Friggeri A, Shinkai S. Organic templates for the generation of inorganic materials. Angew Chem Int Ed, 2003, 42: 980–999CrossRefGoogle Scholar
  10. 10.
    Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev, 2001, 101: 1869–1879CrossRefGoogle Scholar
  11. 11.
    Roy G, Miravet JF, Escuder B, Sanchez C, Llusar M. Morphology templating of nanofibrous silica through pH-sensitive gels: “in situ” and “post-diffusion” strategies. J Mater Chem, 2006, 16: 1817–1824CrossRefGoogle Scholar
  12. 12.
    Gao P, Zhan CL, Liu MH. Controlled synthesis of double- and multiwall silver nanotubes with template organogel from a bolaamphiphile. Langmuir, 2006, 22: 775–779CrossRefGoogle Scholar
  13. 13.
    Holmes TC, de Lacalle S, Su X, Liu GS, Rich A, Zhang SG. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci USA, 2000, 97: 6728–6733CrossRefGoogle Scholar
  14. 14.
    Jung JH, John G, Masuda M, Yoshida K, Shinkai S, Shimizu T. Self-assembly of a sugar-based gelator in water: Its remarkable diversity in gelation ability and aggregate structure. Langmuir, 2001, 17: 7229–7232CrossRefGoogle Scholar
  15. 15.
    Hirst AR, Coates IA, Boucheteau TR, Miravet JF, Escuder B, Castelletto V, Hamley IW, Smith DK. Low-molecular-weight gelators: Elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model. J Am Chem Soc, 2008, 130: 9113–9121CrossRefGoogle Scholar
  16. 16.
    Dawn A, Fujita N, Haraguchi S, Sada K, Shinkai S. An organogel system can control the stereochemical course of anthracene photodimerization. Chem Commun, 2009: 2100–2102Google Scholar
  17. 17.
    Page MG, Warr GG. Influence of the structure and composition of mono- and dialkyl phosphate mixtures on aluminum complex organogels. Langmuir, 2009, 25: 8810–8816CrossRefGoogle Scholar
  18. 18.
    Li YG, Wang TY, Liu MH. Gelating-induced supramolecular chirality of achiral porphyrins: chiroptical switch between achiral molecules and chiral assemblies. Soft Matter, 2007, 3: 1312–1317CrossRefGoogle Scholar
  19. 19.
    Lal M, Pakatchi S, He GS, Kim KS, Prasad PN. Dye-doped organogels: A new medium for two-photon pumped lasing and other optical applications. Chem Mater, 1999, 11: 3012–3014CrossRefGoogle Scholar
  20. 20.
    Shumburo A, Biewer MC. Stabilization of an organic photochromic material by incorporation in an organogel. Chem Mater, 2002, 14: 3745–3750CrossRefGoogle Scholar
  21. 21.
    Gaponik N, Wolf A, Marx R, Lesnyak V, Schilling K, Eychmuller A. Three-dimensional self-assembly of thiol-capped CdTe nanocrystals: Gels and aerogels as building blocks for nanotechnology. Adv Mater, 2008, 20: 4257–4262CrossRefGoogle Scholar
  22. 22.
    Duan PF, Li YG, Liu MH. Preparation of optical active polydiacetylene through gelating and the control of supramolecular chirality. Sci China Chem, 2010, 53: 432–437CrossRefGoogle Scholar
  23. 23.
    Abdallah DJ, Weiss RG. n-alkanes gel n-alkanes (and many other organic liquids). Langmuir, 2000, 16: 352–355CrossRefGoogle Scholar
  24. 24.
    George M, Snyder SL, Terech P, Glinka CJ, Weiss RG. N-alkyl perfluoroalkanamides as low molecular-mass organogelators. J Am Chem Soc, 2003, 125: 10275–10283CrossRefGoogle Scholar
  25. 25.
    Abdallah DJ, Lu LD, Weiss RG. Thermoreversible organogels from alkane gelators with one heteroatom. Chem Mater, 1999, 11: 2907–2911CrossRefGoogle Scholar
  26. 26.
    de Loos M, Feringa BL, van Esch JH. Design and application of self-assembled low molecular weight hydrogels. Eur J Org Chem, 2005: 3615–3631Google Scholar
  27. 27.
    Makarevic J, Jokic M, Peric B, Tomisic V, Kojic-Prodic B, Zinic M. Bis(amino acid) oxalyl amides as ambidextrous gelators of water and organic solvents: Supramolecular gels with temperature dependent assembly/dissolution equilibrium. Chem. Eur. J., 2001, 7:3328–3341CrossRefGoogle Scholar
  28. 28.
    Gronwald O, Shinkai S. Sugar-integrated gelators of organic solvents. Chem. Eur. J., 2001, 7:4328–4334CrossRefGoogle Scholar
  29. 29.
    Kida T, Marui Y, Miyawaki K, Kato E, Akashi M. Unique organogel formation with a channel-type cyclodextrin assembly. Chem Commun, 2009: 3889–3891Google Scholar
  30. 30.
    Yagai S, Nakajima T, Kishikawa K, Kohmoto S, Karatsu T, Kitamura A. Hierarchical organization of photoresponsive hydrogen-bonded rosettes. J Am Chem Soc, 2005, 127: 11134–11139CrossRefGoogle Scholar
  31. 31.
    Terech P, Ostuni E, Weiss RG. Structural study of cholesteryl anthraquinone-2-carboxylate (CAQ) physical organogels by neutron and X-ray small angle scattering. J Phys Chem, 1996, 100: 3759–3766CrossRefGoogle Scholar
  32. 32.
    Ayabe M, Kishida T, Fujita N, Sada K, Shinkai S. Binary organogelators which show light and temperature responsiveness. Org Biomol Chem, 2003, 1: 2744–2747CrossRefGoogle Scholar
  33. 33.
    Wang C, Zhang DQ, Xiang JF, Zhu DB. New organogels based on an anthracene derivative with one urea group and its photodimer: Fluorescence enhancement after gelation. Langmuir, 2007, 23: 9195–9200CrossRefGoogle Scholar
  34. 34.
    Kamikawa Y, Kato T. Color-tunable fluorescent organogels: Columnar self-assembly of pyrene-containing oligo(glutamic acid)s. Langmuir, 2007, 23: 274–278CrossRefGoogle Scholar
  35. 35.
    Burguete MI, Galindo F, Gavara R, Izquierdo MA, Lima JC, Luis SV, Parola AJ, Pina F. Use of fluorescence spectroscopy to study polymeric materials with porous structure based on imprinting by self-assembled fibrillar networks. Langmuir, 2008, 24: 9795–9803CrossRefGoogle Scholar
  36. 36.
    Yang XC, Lu R, Xu TH, Xue PC, Liu XL, Zhao YY. Novel carbazole-based organogels modulated by tert-butyl moieties. Chem Commun, 2008: 453–455Google Scholar
  37. 37.
    Tamaru S, Uchino S, Takeuchi M, Ikeda M, Hatano T, Shinkai S. A porphyrin-based gelator assembly which is reinforced by peripheral urea groups and chirally twisted by chiral urea additives. Tetrahedron Lett, 2002, 43: 3751–3755CrossRefGoogle Scholar
  38. 38.
    Tamaru S, Takeuchi M, Sano M, Shinkai S. Sol-gel transcription of sugar-appended porphyrin assemblies into fibrous silica: Unimolecular stacks versus helical bundles as templates. Angew Chem Int Ed, 2002, 41: 853–856CrossRefGoogle Scholar
  39. 39.
    Diaz DD, Cid JJ, Vazquez P, Torres T. Strength enhancement of nanostructured organogels through inclusion of phthalocyanine-containing complementary organogelator structures and in situ cross-linking by click chemistry. Chem Eur J, 2008, 14: 9261–9273CrossRefGoogle Scholar
  40. 40.
    Ikeda M, Takeuchi M, Shinkai S. Unusual emission properties of a triphenylene-based organogel system. Chem Commun, 2003: 1354–1355Google Scholar
  41. 41.
    Ziessel R, Pickaert G, Camerel F, Donnio B, Guillon D, Cesario M, Prange T. Tuning organogels and mesophases with phenanthroline Ligands and their copper complexes by inter-to intramolecular hydrogen bonds. J Am Chem Soc, 2004, 126: 12403–12413CrossRefGoogle Scholar
  42. 42.
    Kishimura A, Yamashita T, Aida T. Phosphorescent organogels via “metallophilic” interactions for reversible RGB-color switching. J Am Chem Soc, 2005, 127: 179–183CrossRefGoogle Scholar
  43. 43.
    Mieden-Gundert G, Klein L, Fischer M, Vogtle F, Heuze K, Pozzo JL, Vallier M, Fages F. Rational design of low molecular mass organogelators: Toward a library of functional N-acyl-1,omegaamino acid derivatives. Angew Chem Int Ed, 2001, 40: 3164–3166CrossRefGoogle Scholar
  44. 44.
    Terech P, Gebel G, Ramasseul R. Molecular rods in a zinc(II) porphyrin/cyclohexane physical gel: Neutron and X-ray scattering characterizations. Langmuir, 1996, 12: 4321–4323CrossRefGoogle Scholar
  45. 45.
    Kimura M, Muto T, Takimoto H, Wada K, Ohta K, Hanabusa K, Shirai H, Kobayashi N. Fibrous assemblies made of amphiphilic metallophthalocyanines. Langmuir, 2000, 16: 2078–2082CrossRefGoogle Scholar
  46. 46.
    Hui JKH, Yu Z, MacLachlan MJ. Supramolecular assembly of zinc salphen complexes: Access to metal-containing gels and nanofibers. Angew Chem Int Ed, 2007, 46:7980–7983CrossRefGoogle Scholar
  47. 47.
    Funkhouser GP, Tonmukayakul N, Liang F. Rheological comparison of organogelators based on iron and aluminum complexes of dodecylmethylphosphinic acid and methyl dodecanephosphonic acid. Langmuir, 2009, 25: 8672–8677CrossRefGoogle Scholar
  48. 48.
    Tam AYY, Wong KMC, Yam VWW. Unusual luminescence enhancement of metallogels of alkynylplatinum(II) 2,6-bis(N-alkylbenzimidazol-2′-yl)pyridine complexes upon a gel-to-sol phase transition at elevated temperatures. J Am Chem Soc, 2009, 131: 6253–6262CrossRefGoogle Scholar
  49. 49.
    Ishi-i T, Shinkai S. Dye-based organogels: Stimuli-responsive soft materials based on one-dimensional self-assembling aromatic dyes. Supermol Dye Chem, 2005, 258: 119–160CrossRefGoogle Scholar
  50. 50.
    Li XQ, Zhang X, Ghosh S, Wurthner F. Highly fluorescent lyotropic mesophases and organogels based on J-aggregates of core-twisted perylene bisimide dyes. Chem Eur J, 2008, 14: 8074–8078CrossRefGoogle Scholar
  51. 51.
    Tian HJ, Inoue K, Yoza K, Ishi-i T, Shinkai S. New organic gelalors bearing a porphyrin group: A new strategy to create ordered porphyrin assemblies. Chem Lett, 1998: 871-872Google Scholar
  52. 52.
    Sperling LH. Introduction to Physical Polymer Science. New York: John Wiley & Sons, 2006Google Scholar
  53. 53.
    Davis BK. Diffusion in polymer gel implants. Proc Natl Acad Sci USA, 1974, 71: 3120–3123CrossRefGoogle Scholar
  54. 54.
    Kwon IC, Bae YH, Kim SW. Electrically erodible polymer gel for controlled release of drugs. Nature, 1991, 354: 291–293CrossRefGoogle Scholar
  55. 55.
    Wang P, Zakeeruddin SM, Exnar I, Gratzel M. High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem Commun, 2002: 2972-2973Google Scholar
  56. 56.
    Yang Z, Liang G, Xu B. Enzymatic hydrogelation of small molecules. Acc Chem Res, 2008, 41: 315–326CrossRefGoogle Scholar
  57. 57.
    Mueggenburg KE, Lin XM, Goldsmith RH, Jaeger HM. Elastic membranes of close-packed nanoparticle arrays. Nat Mater, 2007, 6: 656–660CrossRefGoogle Scholar
  58. 58.
    Nykypanchuk D, Maye MM, van der Lelie D, Gang O. DNA-guided crystallization of colloidal nanoparticles. Nature, 2008, 451: 549–552CrossRefGoogle Scholar
  59. 59.
    Petty JT, Zheng J, Hud NV, Dickson RM. DNA-templated Ag nanocluster formation. J Am Chem Soc, 2004, 126: 5207–5212CrossRefGoogle Scholar
  60. 60.
    Li YG, Liu MH. Fabrication of chiral silver nanoparticles and chiral nanoparticulate film via organogel. Chem Commun, 2008: 5571-5573Google Scholar
  61. 61.
    Noone KM, Ginger DS. Doping for speed: Colloidal nanoparticles for thin-film optoelectronics. Acs Nano, 2009, 3: 261–265CrossRefGoogle Scholar
  62. 62.
    Cassagneau T, Mallouk TE, Fendler JH. Layer-by-layer assembly of thin film zener diodes from conducting polymers and CdSe nanoparticles. J Am Chem Soc, 1998, 120: 7848–7859CrossRefGoogle Scholar
  63. 63.
    Jung JH, Ono Y, Sakurai K, Sano M, Shinkai S. Novel vesicular aggregates of crown-appended cholesterol derivatives which act as gelators of organic solvents and as templates for silica transcription. J Am Chem Soc, 2000, 122: 8648–8653CrossRefGoogle Scholar
  64. 64.
    Pal A, Srivastava A, Bhattacharya S. Role of capping ligands on the nanoparticles in the modulation of properties of a hybrid matrix of nanoparticles in a 2D film and in a supramolecular organogel. Chem Eur J, 2009, 15: 9169–9182CrossRefGoogle Scholar
  65. 65.
    Sangeetha NM, Bhat S, Raffy G, Belin C, Loppinet-Serani A, Aymonier C, Terech P, Maitra U, Desvergne JP, Del Guerzo A. Hybrid materials combining photoactive 2,3-didecyloxy anthracene physical gels and gold nanoparticles. Chem Mater, 2009, 21: 3424–3432CrossRefGoogle Scholar
  66. 66.
    Kimura M, Kobayashi S, Kuroda T, Hanabusa K, Shirai H. Assembly of gold nanoparticles into fibrous aggregates using thiol-terminated gelators. Adv Mater, 2004, 16: 335–338CrossRefGoogle Scholar
  67. 67.
    Suzuki M, Nakajima Y, Sato T, Shirai H, Hanabusa K. Fabrication of TiO2 using L-lysine-based organogelators as organic templates: control of the nanostructures. Chem Commun, 2006: 377-379Google Scholar
  68. 68.
    Li LS, Stupp SI. One-dimensional assembly of lipophilic inorganic nanoparticles templated by peptide-based nanofibers with binding functionalities. Angew Chem Int Ed, 2005, 44: 1833–1836CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • PengFei Duan
    • 1
  • YuanGang Li
    • 1
  • Jian Jiang
    • 1
  • TianYu Wang
    • 1
  • MingHua Liu
    • 1
  1. 1.Beijing National Laboratory for Molecular Science; CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics; Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations