Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Formation of efficient dye-sensitized solar cells by introducing an interfacial layer of hierarchically ordered macro-mesoporous TiO2 film

  • 295 Accesses

  • 16 Citations

Abstract

Hierarchically ordered macro-mesoporous TiO2 films (Ti-Ma-Me) were fabricated on fluorine-doped tin oxide (FTO) substrates through the confinement self-assembly method. The prepared Ti-Ma-Me possesses periodically ordered structure and a large specific surface area, which was applied as an interfacial layer between the nanocrystalline TiO2 film (P25-TiO2) and FTO electrode in the dye-sensitized solar cell (DSSC). The introduction of a Ti-Ma-Me interfacial layer increased the shortcircuit current density (J sc) from 7.49 to 10.65 mA/cm2 and the open-circuit voltage (V oc) from 0.65 to 0.70 V as the result of its improved light harvesting efficiency by allowing for the high roughness factor and enhanced multiple internal reflection or scattering as well as reducing the back-transport reaction by blocking direct contact between the electrolyte and FTO electrode. Therefore, the photovoltaic conversion efficiency (η) was improved by 83% from 3.04% to 5.55%, as compared to a device using a bare P25 TiO2 photoanode.

This is a preview of subscription content, log in to check access.

References

  1. 1

    O’regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353: 737–740

  2. 2

    Bach U, Lupo D, Comte P, Moser J, Weissö rtel F, Salbeck J, Spreitzer H, Gratzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998, 395: 583–585

  3. 3

    Hagfeldt A, Gratzel M. Molecular photovoltaics. Acc Chem Res, 2000, 33: 269–277

  4. 4

    Nazeeruddin M, Pechy P, Renouard T, Zakeeruddin S, Humphry-Baker R, Comte P, Liska P, Costa E, Shklover V, Spiccia L. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc, 2001, 123: 1613–1624

  5. 5

    Barb C, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Gratzel M. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am Ceram Soc, 1997, 80: 3157–3171

  6. 6

    Gratzel M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem, 2005, 44: 6841–6851

  7. 7

    Campbell W, Jolley K, Wagner P, Wagner K, Walsh P, Gordon K, Schmidt-Mende L, Nazeeruddin M, Wang Q, Gratzel M. Highly efficient porphyrin sensitizers for dye-sensitized solar cells. J Phys Chem C, 2007, 111: 11760–11762

  8. 8

    Gratzel M. Dye-sensitized solar cells. J Photochem Photobiol C, 2003, 4: 145–153

  9. 9

    Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L. Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn J Appl Phys, Part 2, 2006, 45: 638–640

  10. 10

    Zhu K, Vinzant TB, Neale NR, Frank AJ. Removing structural disorder from oriented TiO2 nanotube arrays: Reducing the dimensionality of transport and recombination in dye-sensitized solar cells. Nano Lett, 2007, 7: 3739–3746

  11. 11

    Zhao Y, Sheng XL, Zhai J, Jiang L, Yang CH, Sun ZW, Li YF, Zhu DB. TiO2 porous electrodes with hierarchical branched inner channels for charge transport in viscous electrolytes. ChemPhysChem, 2007, 8: 856–861

  12. 12

    Zukalova M, Zukal A, Kavan L, Nazeeruddin MK, Liska P, Gratzel M. Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. Nano Lett, 2005, 5: 1789–1792

  13. 13

    Kang TS, Smith AP, Taylor BE, Durstock MF. Fabrication of highly-ordered TiO2 nanotube arrays and their use in dye-sensitized solar cells. Nano Lett, 2009, 9: 601–606

  14. 14

    Yang NL, Zhai J, Wang D, Chen YS, Jiang L. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano, 2010, 4: 887–894

  15. 15

    Zhang W, Zhu R, Ke L, Liu XZ, Liu B, Ramakrishna S. Anatase mesoporous TiO2 nanofibers with high surface area for solid-state dye-sensitized solar cells. Small, 2010, 6: 2176–2182

  16. 16

    Xu CK, Shin PH, Cao LL, Wu JM, Gao D. Ordered TiO2 nanotube arrays on transparent conductive oxide for dye-sensitized solar cells. Chem Mater, 2010, 22: 143–148

  17. 17

    Barbe CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Gratzel M. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am Ceram Soc, 1997, 80: 3157–3171

  18. 18

    Willis RL, Olson C, O’Regan B, Lutz T, Nelson J, Durrant JR. Electron dynamics in nanocrystalline ZnO and TiO2 films probed by potential step chronoamperometry and transient absorption spectroscopy. J Phys Chem B, 2002, 106: 7605–7613

  19. 19

    Gratzel M. Sol-gel processed TiO2 films for photovoltaic applications. J Sol-Gel Sci Technol, 2001, 22: 7–13

  20. 20

    Rothenberger G, Comte P, Gratzel M. A contribution to the optical design of dye-sensitized nanocrystalline solar cells. Sol Energy Mater Sol C, 1999, 58: 321–336

  21. 21

    Hore S, Vetter C, Kern R, Smit H, Hinsch A. Influence of scattering layers on efficiency of dye-sensitized solar cells. Sol Energy Mater Sol C, 2006, 90: 1176–1188

  22. 22

    Wang Z, Kawauchi H, Kashima T, Arakawa H. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord Chem Rev, 2004, 248: 1381–1389

  23. 23

    Nishimura S, Abrams N, Lewis B, Halaoui L, Mallouk T, Benkstein K, van de Lagemaat J, Frank A. Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals. J Am Chem Soc, 2003, 125: 6306–6310

  24. 24

    Mihi A, Míguez H. Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells. J Phys Chem B, 2005, 109: 15968–15976

  25. 25

    Mihi A, Miguez H, Rodriguez I, Rubio S, Meseguer F. Surface resonant modes in colloidal photonic crystals. Phys Rev B, 2005, 71: 125131–125137

  26. 26

    Halaoui LI, Abrams NM, Mallouk TE. Increasing the conversion efficiency of dye-sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals. J Phys Chem B, 2005, 109: 6334–6342

  27. 27

    Lee SHA, Abrams NM, Hoertz PG, Barber GD, Halaoui LI, Mallouk TE. Coupling of titania inverse opals to nanocrystalline titania layers in dye-sensitized solar cells. J Phys Chem B, 2008, 112: 14415–14421

  28. 28

    Goodwin JW, Hearn J, Ho CC, Ottewill RH. Studies on preparation and characterization fo monnodisperse polystyrene lattices. 3. preparation without added surface-active agents. Colloid Polym Sci, 1974, 252: 464–471

  29. 29

    Du J, Lai XY, Yang NL, Zhai J, Kisailus D, Su FB, Wang D, Jiang L. Hierarchically ordered macro-mesoporous TiO2-graphene composite films: Improved mass-transfer, reduced charge recombination and their enhanced photocatalytic activities. ACS Nano, 2011, 5: 590–596

  30. 30

    Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc, 2000, 122: 10712–10713

  31. 31

    Lai XY, Wang D, Han N, Du J, Li J, Xing CJ, Chen YF, Li XT. Ordered arrays of bead-chain-like In2O3 nanorods and their enhanced sensing performance for formaldehyde. Chem Mater, 2010, 22: 3033–3042

  32. 32

    Kang SH, Kim JY, Sung YE. Role of surface state on the electron flow in modified TiO2 film incorporating carbon powder for a dye-sensitized solar cell. Electrochim Acta, 2007, 52: 5242–5250

  33. 33

    Kang S, Choi S, Kang M, Kim J, Kim H, Hyeon T, Sung Y. Nanorod©\based dye©\sensitized solar cells with improved charge collection efficiency. Adv Mater, 2008, 20: 54–58

  34. 34

    Ni M, Leung MKH, Leung DYC, Sumathy K. An analytical study of the porosity effect on dye-sensitized solar cell performance. Sol Energy Mater Sol C, 2006, 90: 1331–1344

  35. 35

    Kuang DB, Brillet J, Chen P, Takata M, Uchida S, Miura H, Sumioka K, Zakeeruddin SM, Gratzel M. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano, 2008, 2: 1113–1116

  36. 36

    Zhu K, Neale NR, Miedaner A, Frank AJ. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett, 2007, 7: 69–74

  37. 37

    Muniz EC, Goes MS, Silva JJ, Varela JA, Joanni E, Parra R, Bueno PR. Synthesis and characterization of mesoporous TiO2 nanostructured films prepared by a modified sol-gel method for application in dye solar cells. Ceramics International, 2010, 1017–1024

Download references

Author information

Correspondence to Dan Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Du, J., Lai, X., Halpert, J.E. et al. Formation of efficient dye-sensitized solar cells by introducing an interfacial layer of hierarchically ordered macro-mesoporous TiO2 film. Sci. China Chem. 54, 930 (2011). https://doi.org/10.1007/s11426-011-4288-9

Download citation

Keywords

  • dye-sensitized solar cells
  • hierarchical
  • ordered macro-mesoporous
  • photoanode