Science China Chemistry

, Volume 54, Issue 2, pp 302–313 | Cite as

Flame retarded polymer nanocomposites: Development, trend and future perspective

  • HaiYun Ma
  • PingAn Song
  • ZhengPing FangEmail author
Reviews Special Issue


Polymer nanocomposites are a new class of flame retarded materials which have attracted much attention and considered as a revolutionary new flame retardant approach. A very small amount of nano flame retardants (normally < 5 wt%) can significantly reduce the heat release rate (HRR) and smoke emission (SEA) during the combustion of polymer materials. Moreover, the addition of nano flame retardants can also improve the mechanical properties of polymer materials compared with the deterioration of traditional flame retardants. This paper reviews the recent development in the flame retardant field of polymer nanocomposites and also introduces the related research in our lab. The challenges and problems are discussed and the future development of flame retarded polymer nanocomposites is prospected.


nanocomposite layered silicate carbon nanotubes fullerene flame retardancy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fujiwara S, Sakamoto KT. Falmmability properties of Nylon-6/mica nanocomposites. Japan Kokai Pat Appl, 109998, 1976Google Scholar
  2. 2.
    Okada A, Kawasumi M, Kurauchi T. Synthesis and properties of Nylon-6/clay hybrids. Polym Prep, 1987, 28: 447–452Google Scholar
  3. 3.
    Giannelis EP. Polymer layered silicate nanocomposites. Adv Mater, 1996, 8: 29–35CrossRefGoogle Scholar
  4. 4.
    Giannelis EP. Polymer-layered silicate nanocomposites: Synthesis, properties and applications. Appl Organomet Chem, 1998, 12(10–11): 675–680CrossRefGoogle Scholar
  5. 5.
    Giannelis EP, Krishnamoorti R, Manias E. Polymer-silicate nanocomposites: Model systems for confined polymers and polymer brushes. Polym Confined Environ, 1999, 138: 107–147CrossRefGoogle Scholar
  6. 6.
    Ray SS, Okamoto M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog Polym Sci, 2003, 28(11): 1539–1641CrossRefGoogle Scholar
  7. 7.
    Hussain F, Hojjati M, Okamoto M, Gorga RE. Review article: Polymermatrix nanocomposites, processing, manufacturing, and application: An overview. J Comp Mater, 2006, 40(17): 1511–1575CrossRefGoogle Scholar
  8. 8.
    Manias E, Touny A, Wu L, Strawhecker K, Lu B, Chung TC. Polypropylene/Montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem Mater, 2001, 13(10): 3516–3523CrossRefGoogle Scholar
  9. 9.
    LeBaron PC, Wang Z, Pinnavaia TJ. Polymer-layered silicate nanocomposites: An overview. Appl Clay Scie, 1999, 15(1–2): 11–29CrossRefGoogle Scholar
  10. 10.
    Ahmadi SJ, Huang YD, Li W. Synthetic routes, properties and future applications of polymer-layered silicate nanocomposites. J Mater Sci, 2004, 39(6): 1919–1925CrossRefGoogle Scholar
  11. 11.
    Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Maters Sci Eng R-Reports, 2000, 28(1–2): 1–63CrossRefGoogle Scholar
  12. 12.
    Okamoto M. Recent advances in polymer/layered silicate nanocomposites: An overview from science to technology. Mater Sci Technol, 2006, 22(7): 756–779CrossRefGoogle Scholar
  13. 13.
    Zanetti M, Lomakin S, Camino G. Polymer layered silicate nanocomposites. Macromolecular Mater Eng, 2000, 279(6): 1–9CrossRefGoogle Scholar
  14. 14.
    Qi ZN, Shang WY. Polymer/Phyllosilicates Nanocomposites-Thoery and Practice (in Chinese). Beijing: Chemical Industrial Press, 2002Google Scholar
  15. 15.
    Pinnavaia TJ, Beall GW. Polymer-Clay Nanocomposite. Wiley, 2001Google Scholar
  16. 16.
    Ke YC, Stroeve P. Polymer-Layered Silicate and Silica Nanocomposites. Elsevier Science, 2005Google Scholar
  17. 17.
    Gilman JW, Kashiwagi T, Morgan AB. Flammability of Polymer Clay. Nanocomposites Consortium: Year One Annual Report, NISTIR 531, 2000Google Scholar
  18. 18.
    Gilman JW, Kashiwagi T, Lichtenhan J. 42 nd International SAMPLE Symposium. Los Angeles, 1997Google Scholar
  19. 19.
    Wang YQ. Flame Retarded Materials and Its Application Technologies (in Chinese). Beijing: Chemical Industrial Press, 2003Google Scholar
  20. 20.
    Yang F, Yngard R, Hernberg A, Nelson GL. Thermal stability and flammability of polymer-silica nanocomposites prepared via extrusion. Fire Polym IV: Mater Concept Hazard Prevention, 2006, 922: 144–154CrossRefGoogle Scholar
  21. 21.
    Zong RW, Hu Y, Liu N, Li S, Liao GX. Investigation of thermal degradation and flammability of Polyamide-6 and Polyamide-6 nanocomposites. J Appl Polym Sci, 2007, 104(4): 2297–2303CrossRefGoogle Scholar
  22. 22.
    Wang SF, Hu Y, Li ZL, Wang ZZ, Zhuang YL, Chen ZY, Fan WC. Flammability and phase-transition studies of nylon 6/montmorillonite nanocomposites. Colloid Polym Sci, 2003, 281(10): 951–956CrossRefGoogle Scholar
  23. 23.
    Kashiwagi T, Harris RH, Zhang X, Briber RM, Cipriano BH, Raghavan SR, Awad WH, Shields JR. Flame retardant mechanism of Polyamide 6-clay nanocomposites. Polymer, 2004, 45(3): 881–891CrossRefGoogle Scholar
  24. 24.
    Dong WF, Zhang XH, Liu YQ, Wang QG, Gui H, Gao HM, Song ZH, Lai JM, Huang F, Qiao JL. Flame retardant nanocomposites of Polyamide 6/clay/silicone rubber with high toughness and good flowability. Polymer, 2006, 47(19): 6874–6879CrossRefGoogle Scholar
  25. 25.
    Shanmuganathan K, Deodhar S, Dembsey N, Fan QG, Calvert PD, Warner SB, Patra PK. Flame retardancy and char microstructure of Nylon-6/layered silicate nanocomposites. J Appl Polym Sci, 2007, 104(3): 1540–1550CrossRefGoogle Scholar
  26. 26.
    Hao XY, Gai GS, Liu JP, Yang WF, Zhang YH, Nan CW. Flame retardancy and antidripping effect of OMT/PA nanocomposites. Mater Chem Phys, 2006, 96(1): 34–41CrossRefGoogle Scholar
  27. 27.
    Bourbigot S, Devaux E, Flambard X. Flammability of Polyamide-6/clay hybrid nanocomposite textiles. Polym Degrad Stab, 2002, 75(2): 397–402CrossRefGoogle Scholar
  28. 28.
    Tang Y, Hu Y, Song L, Zong RW, Gui Z, Fan WC. Preparation and combustion properties polypropylene-Polyamide-6 of flame retarded alloys. Polym Degrad Stab, 2006, 91(2): 234–241CrossRefGoogle Scholar
  29. 29.
    Jang BN, Wilkie CA. The effect of clay on the thermal degradation of Polyamide 6 in Polyamide 6/clay nanocomposites. Polymer, 2005, 46(10): 3264–3274CrossRefGoogle Scholar
  30. 30.
    Morgan AB, Harris JD. Effects of organoclay Soxhlet extraction on mechanical properties, Flammability properties and organoclay dispersion of polypropylene nanocomposites. Polymer, 2003, 44(8): 2313–2320CrossRefGoogle Scholar
  31. 31.
    Valera-Zaragoza A, Ramirez-Vargas E, Medellin-Rodriguez FJ, Huerta-Martinez BM. Thermal stability and flammability properties of heterophasic PP-EP/EVA/organoclay nanocomposites. Polym Degrad Stab, 2006, 91(6): 1319–1325CrossRefGoogle Scholar
  32. 32.
    Hong CH, Lee YB, Bae JW, Jho JY, Nam BU, Nam GJ, Lee KJ. Tensile and flammability properties of polypropylene based RTPO/clay nanocomposites for cable insulating material. J Appl Polym Sci, 2005, 97(6): 2375–2381CrossRefGoogle Scholar
  33. 33.
    Gilman JW, Jackson CL, Morgan AB, Harris R, Manias E, Giannelis EP, Wuthenow M, Hilton D, Phillips SH. Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem Mater, 2000, 12(7): 1866–1873CrossRefGoogle Scholar
  34. 34.
    Lee SG, Won JC, Lee JH, Choi KY. Flame retardancy of polypropylene/montmorillonite nanocomposites. Polymer-Korea, 2005, 29(3): 248–252Google Scholar
  35. 35.
    Qin HL, Zhang SM, Zhao CG, Hu GJ, Yang MS. Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene. Polymer, 2005, 46(19): 8386–8395CrossRefGoogle Scholar
  36. 36.
    Zanetti M, Camino G, Reichert P, Mulhaupt R. Thermal behaviour of poly(propylene) layered silicate nanocomposites. Macromol Rapid Commun, 2001, 22(3): 176–180CrossRefGoogle Scholar
  37. 37.
    Su SP, Jiang DD, Wilkie CA. Poly(methyl methacrylate), polypropylene and polyethylene nanocomposite formation by melt blending using novel polymerically-modified clays. Polym Degrad Stab, 2004, 83(2): 321–331CrossRefGoogle Scholar
  38. 38.
    Morgan AB, Chu LL, Harris JD. A flammability performance comparison between synthetic and natural clays in polystyrene nanocomposites. Fire Mater, 2005, 29(4): 213–229CrossRefGoogle Scholar
  39. 39.
    Zhang J, Zhang HP. Study on the flammability of HIPS-montmorillonite nanocomposites prepared by static melt intercalation. J Fire Sci, 2005, 23(3): 193–208CrossRefGoogle Scholar
  40. 40.
    Morgan AB, Harris RH, Kashiwagi T, Chyall LJ, Gilman JW. Flammability of polystyrene layered silicate (clay) nanocomposites: Carbonaceous char formation. Fire Mater, 2002, 26(6): 247–253CrossRefGoogle Scholar
  41. 41.
    Bourbigot S, Gilman JW, Wilkie CA. Kinetic analysis of the thermal degradation of polystyrene-montmorillonite nanocomposite. Polym Degrad Stab, 2004, 84(3): 483–492CrossRefGoogle Scholar
  42. 42.
    Chigwada G, Jiang DD, Wilkie CA. Fire retardancy of polystyrene nanocomposites using naphthenate-containing clays. Fire Polym IV: Mater Concept Hazard Prevention, 2006, 922: 103–116CrossRefGoogle Scholar
  43. 43.
    Gilman JW, Harris RH, Shields JR, Kashiwagi T, Morgan AB. A study of the flammability reduction mechanism of polystyrene-layered silicate nanocomposite: Layered silicate reinforced carbonaceous char. Polym Adv Technol, 2006, 17(4): 263–271CrossRefGoogle Scholar
  44. 44.
    Yao HY, Zhu J, Morgan AB, Wilkie CA. Crown ether-modified clays and their polystyrene nanocomposites. Polym Eng Sci, 2002, 42(9): 1808–1814CrossRefGoogle Scholar
  45. 45.
    Chigwada G, Wang DY, Wilkie CA. Polystyrene nanocomposites based on quinolinium and pyridinium surfactants. Polym Degrad Stab, 2006, 91(4): 848–855CrossRefGoogle Scholar
  46. 46.
    Barbosa R, Araujo EM, Mejo TJA, Ito EN. Comparison of flammability behavior of polyethylene/Brazilian clay nanocomposites and polyethylene/flame retardants. Mater Lett, 2007, 61(11–12): 2575–2578CrossRefGoogle Scholar
  47. 47.
    Zhang JG, Wilkie CA. Preparation and flammability properties of polyethylene-clay nanocomposites. Polym Degrad Stab, 2003, 80(1): 163–169CrossRefGoogle Scholar
  48. 48.
    Zhao CG, Qin HL, Gong FL, Feng M, Zhang SM, Yang MS. Mechanical, thermal and flammability properties of polyethylene/clay nanocomposites. Polym Degrad Stab, 2005, 87(1): 183–189CrossRefGoogle Scholar
  49. 49.
    Peneva Y, Tashev E, Minkova L. Flammability, microhardness and transparency of nanocomposites based on functionalized polyethylenes. Eur Polym J, 2006, 42(10): 2228–2235CrossRefGoogle Scholar
  50. 50.
    Wang SF, Hu Y, Qu ZK, Wang ZZ, Chen ZY, Fan WC. Preparation and flammability properties of polyethylene/clay nanocomposites by melt intercalation method from Na+ montmorillonite. Mater Lett, 2003, 57(18): 2675–2678CrossRefGoogle Scholar
  51. 51.
    Qiu LZ, Chen W, Qu BJ. Morphology and thermal stabilization mechanism of LLDPE/MMT and LLDPE/LDH nanocomposites. Polymer, 2006, 47(3): 922–930CrossRefGoogle Scholar
  52. 52.
    Zhang JG, Wilkie CA. Polyethylene and polypropylene nanocomposites based on polymerically-modified clay containing alkylstyrene units. Polymer, 2006, 47(16): 5736–5743CrossRefGoogle Scholar
  53. 53.
    Chuang TH, Guo WJ, Cheng KC, Chen SW, Wang HT, Yen YY. Thermal properties and flammability of ethylene-vinyl acetate copolymer/montmorillonite/polyethylene nanocomposites with flame retardants. J Polym Research-Taiwan, 2004, 11(3): 169–174CrossRefGoogle Scholar
  54. 54.
    Tang Y, Hu YA, Wang SF, Gui Z, Chen ZY, Fan WC. Preparation and flammability of ethylene-vinyl acetate copolymer/montmorillonite nanocomposites. Polym Degrad Stab, 2002, 78(3): 555–559CrossRefGoogle Scholar
  55. 55.
    Zanetti M, Kashiwagi T, Falqui L, Camino G. Cone calorimeter combustion and gasification studies of polymer layered silicate nanocomposites. Chem Mater, 2002, 14(2): 881–887CrossRefGoogle Scholar
  56. 56.
    Gianelli W, Camino G, Dintcheva NT, Lo Verso S, La Mantia FP. EVA-montmorillonite nanocomposites: Effect of processing conditions. Macromol Mater Eng, 2004, 289(3): 238–244CrossRefGoogle Scholar
  57. 57.
    Costache MC, Jiang DD, Wilkie CA. Thermal degradation of ethylenevinyl acetate coplymer nanocomposites. Polymer, 2005, 46(18): 6947–6958CrossRefGoogle Scholar
  58. 58.
    Zhang HF, Wang YQ, Wu YP, Zhang LQ, Yang J. Study on flammability of montmorillonite/styrene-butadiene rubber (SBR) nanocomposites. J Appl Polym Sci, 2005, 97(3): 844–849CrossRefGoogle Scholar
  59. 59.
    Yang L, Hu Y, Lu HD, Song L. Morphology, thermal, and mechanical properties of flame-retardant silicone rubber/montmorillonite nanocomposites. J Appl Polym Sci, 2006, 99(6): 3275–3280CrossRefGoogle Scholar
  60. 60.
    Zheng XX, Jiang DD, Wang DY, Wilkie CA. Flammability of styrenic polymer clay nanocomposites based on a methyl methacrylate oligomerically-modified clay. Polym Degrad Stab, 2006, 91(2): 289–297CrossRefGoogle Scholar
  61. 61.
    Costache MC, Wang DY, Heidecker MJ, Manias E, Wilkie CA. The thermal degradation of poly(methyl methacrylate) nanocomposites with montmorillonite, layered double hydroxides and carbon nanotubes. Polym Adv Technol, 2006, 17(4): 272–280CrossRefGoogle Scholar
  62. 62.
    Du JX, Zhu J, Wilkie CA, Wang JQ. An XPS investigation of thermal degradation and charring on PMMA clay nanocomposites. Polym Degrad Stab, 2002, 77(3): 377–381CrossRefGoogle Scholar
  63. 63.
    Du JX, Wang JQ, Su SP, Wilkie CA. Additional XPS studies on the degradation of poly(methyl methacrylate) and polystyrene nanocomposites. Polym Degrad Stab, 2004, 83(1): 29–34CrossRefGoogle Scholar
  64. 64.
    Su SP, Jiang DD, Wilkie CA. Methacrylate modified clays and their polystyrene and poly(methyl methacrylate) nanocomposites. Polym Adv Technol, 2004, 15(5): 225–231CrossRefGoogle Scholar
  65. 65.
    Kandola BK, Nazare S, Horrocks AR, Myler P. Effect of layered silicate nanocomposites on burning behavior of conventionally flame-retarded unsaturated polyesters. Fire Polym IV: Mater Concept Hazard Prevention, 2006, 922: 155–171CrossRefGoogle Scholar
  66. 66.
    Gianelli W, Camino G, Tabuani D, Bortolon V, Savadori T, Monticelli O. Fire behaviour of polyester-clay nanocomposites. Fire Mater, 2006, 30(5): 333–341CrossRefGoogle Scholar
  67. 67.
    Xiao JF, Hu Y, Kong QK, Song L, Wang ZZ, Chen ZY, Fan WC. Poly(butylene terephthalate)/clay nanocomposites directly prepared from pristine montmorillonite (MMT). Polym Bull, 2005, 54(4–5): 271–278CrossRefGoogle Scholar
  68. 68.
    Costache MC, Heidecker MJ, Manias E, Wilkie CA. Preparation and characterization of poly(ethylene terephthalate)/clay nanocomposites by melt blending using thermally stable surfactants. Polym Adv Technol, 2006, 17(9–10): 764–771CrossRefGoogle Scholar
  69. 69.
    Song L, Hu Y, Tang Y, Zhang R, Chen ZY, Fan WC. Study on the properties of flame retardant polyurethane/organoclay nanocomposite. Polym Degrad Stab, 2005, 87(1): 111–116CrossRefGoogle Scholar
  70. 70.
    Hsiue GH, Liu YL, Liao HH. Flame-retardant epoxy resins: An approach from organic-inorganic hybrid nanocomposites. J Polym Sci Part A-Polym Chem, 2001, 39(7): 986–996CrossRefGoogle Scholar
  71. 71.
    Zammarano M, Franceschi M, Bellayer S, Gilman JW, Meriani S. Preparation and flame resistance properties of revolutionary self-extinguishing epoxy nanocomposites based on layered double hydroxides. Polymer, 2005, 46(22): 9314–9328CrossRefGoogle Scholar
  72. 72.
    Beyer G. Flame retardancy of nanocomposites-From research to reality -Review. Polym Polym Comp, 2005, 13(5): 529–537Google Scholar
  73. 73.
    Bourbigot S, Duquesne S, Jama C. Polymer nanocomposites: How to reach low flammability? Macromol Symp, 2006, 233: 180–190CrossRefGoogle Scholar
  74. 74.
    Bourbigot S, Duquesne S. Fire retardant polymers: Recent developments and opportunities. J Mater Chem, 2007, 17(22): 2283–2300CrossRefGoogle Scholar
  75. 75.
    Gilman JW, Kashiwagi T, Lichtenhan JD. Nanocomposites: A revolutionary new flame retardant approach. SAMPE J, 1997, 33(4): 40–46Google Scholar
  76. 76.
    Morgan AB. Flame retarded polymer layered silicate nanocomposites: A review of commercial and open literature systems. Polym Adv Technol, 2006, 17(4): 206–217CrossRefGoogle Scholar
  77. 77.
    Hao JW, Lewin M, Wilkie CA, Wang JQ. Additional evidence for the migration of clay upon heating of clay-polypropylene nanocomposites from X-ray photoelectron spectroscopy (XPS). Polym Degrad Stab, 2006, 91(10): 2482–2485CrossRefGoogle Scholar
  78. 78.
    Jia XW. Retardant Nanomaterials (in Chinese). Chemical Industrial Press, 2005Google Scholar
  79. 79.
    Zhu J, Uhl FM, Morgan AB, Wilkie CA. Studies on the mechanism by which the formation of nanocomposites enhances thermal stability. Chem Mater, 2001, 13(12): 4649–4654CrossRefGoogle Scholar
  80. 80.
    Zheng XX, Wilkie CA. Flame retardancy of polystyrene nanocomposites based on an oligomeric organically-modified clay containing phosphate. Polym Degrad Stab, 2003, 81(3): 539–550CrossRefGoogle Scholar
  81. 81.
    Hao JW, Wilkie CA, Wang JQ. An XPS investigation of thermal degradation and charring of cross-linked polyisoprene and polychloroprene. Polym Degrad Stab, 2001, 71(2): 305–315CrossRefGoogle Scholar
  82. 82.
    Wang JQ, Du JX, Zhu J, Wilkie CA. An XPS study of the thermal degradation and flame retardant mechanism of polystyrene-clay nanocomposites. Polym Degrad Stab, 2002, 77(2): 249–252CrossRefGoogle Scholar
  83. 83.
    Du JX, Wang DY, Wilkie CA, Wang JQ. An XPS investigation of thermal degradation and charring on poly(vinyl chloride)-clay nanocomposites. Polym Degrad Stab, 2003, 79(2): 319–324CrossRefGoogle Scholar
  84. 84.
    Tang T, Chen XC, Chen H, Meng XY, Jiang ZW, Bi WG. Catalyzing carbonization of polypropylene itself by supported nickel catalyst during combustion of polypropylene/clay nanocomposite for improving fire retardancy. Chem Mater, 2005, 17(11): 2799–2802CrossRefGoogle Scholar
  85. 85.
    Meng XY, Wang Z, Zhao ZF, Du XH, Bi WG, Tang T. Morphology evolutions of organically modified montmorillonite/polyamide 12 nanocomposites. Polymer, 2007, 48(9): 2508–2519CrossRefGoogle Scholar
  86. 86.
    Wang Z, Du XH, Song RJ, Meng XY, Jiang ZW, Tang T. Chemical effects of cationic surfactant and anionic surfactant used in organically modified montmorillonites on degradation and fire retardancy of polyamide 12 nanocomposites. Polymer, 2007, 48(25): 7301–7308CrossRefGoogle Scholar
  87. 87.
    Meng XY, Du XH, Wang Z, Bi WG, Tang T. The investigation of exfoliation process of organic modified montmorillonite in thermoplastic polyurethane with different molecular weights. Compos Sci Technol, 2008, 68(7-8): 1815–1821CrossRefGoogle Scholar
  88. 88.
    Tang T, Chen XC, Meng XY, Chen H, Ding YP. Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene. Angew Chem Int Ed, 2005, 44(10): 1517–1520CrossRefGoogle Scholar
  89. 89.
    Jiang ZW, Song RJ, Bi WG, Lu J, Tang T. Polypropylene as a carbon source for the synthesis of multi-walled carbon nanotubes via catalytic combustion. Carbon, 2007, 45(2): 449–458CrossRefGoogle Scholar
  90. 90.
    Song RJ, Jiang ZW, Yu HO, Liu J, Zhang ZJ, Wang QW, Tang T. Strengthening carbon deposition of polyolefin using combined catalyst as a general method for improving fire retardancy. Macromol Rapid Commun, 2008, 29(10): 789–793CrossRefGoogle Scholar
  91. 91.
    Chen XC, Ding YP, Tang T. Synergistic effect of nickel formate on the thermal and flame-retardant properties of polypropylene. Polym Int, 2005, 54(6): 904–908CrossRefGoogle Scholar
  92. 92.
    Horrocks AR, Price D. Fire Retardant Materials. Woodhead Publishing CRC Press, 2001Google Scholar
  93. 93.
    Ma HY, Fang ZP, Tong LF. Preferential melt intercalation of clay in ABS/brominated epoxy resin-antimony oxide (BER-AO) nanocomposites and its synergistic effect on thermal degradation and combustion behavior. Polym Degrad Stab, 2006, 91(9): 1972–1979CrossRefGoogle Scholar
  94. 94.
    Ma HY, Xu ZB, Tong LF, Gu AG, Fang ZP. Studies of ABS-graft-maleic anhydride/clay nanocomposites: Morphologies, thermal stability and flammability properties. Polym Degrad Stab, 2006, 91(12): 2951–2959CrossRefGoogle Scholar
  95. 95.
    Ma HY, Tong LF, Xu ZB, Fang ZP. Clay network in ABS-graft-MAH nanocomposites: Rheology and flammability. Polym Degrad Stab, 2007, 92(8): 1439–1445CrossRefGoogle Scholar
  96. 96.
    Chen YJ, Fang ZP, Yang CZ, Wang Y, Guo ZH, Zhang Y. Effect of clay dispersion on the synergism between clay and intumescent flame retardants in polystyrene. J Appl Polym Sci, 2010, 115(2): 777–783CrossRefGoogle Scholar
  97. 97.
    Song PA, Tong LF, Fang ZP. Polypropylene/clay nanocomposites prepared by in situ grafting-melt intercalation with a novel cointercalating monomer. J Appl Polym Sci, 2008, 110(1): 616–623CrossRefGoogle Scholar
  98. 98.
    Ma HY, Tong LF, Xu ZB, Fang ZP. Intumescent flame retardant-montmorillonite synergism in ABS nanocomposites. Appl Clay Sci, 2008, 42(1–2): 238–245CrossRefGoogle Scholar
  99. 99.
    Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58CrossRefGoogle Scholar
  100. 100.
    Kashiwagi T, Grulke E, Hilding J, Harris R, Awad W, Douglas J. Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromol Rapid Commun, 2002, 23(13): 761–765CrossRefGoogle Scholar
  101. 101.
    Tong LF, Ma HY, Fang ZP. Thermal decomposition and flammability properties of acrylonitrile-butadiene-styrene/multi-walled carbon nanotubes nanocomposites. Chinese J Polym Sci. 2008, 26(3): 331–339CrossRefGoogle Scholar
  102. 102.
    Schartel B, Potschke P, Knoll U, Abdel-Goad M. Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites. Eur Polym J, 2005, 41(5): 1061–1070CrossRefGoogle Scholar
  103. 103.
    Kashiwagi T, Du FM, Winey KI, Groth KA, Shields JR, Bellayer SP, Kim H, Douglas JF. Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: Effects of nanotube dispersion and concentration. Polymer, 2005, 46(2): 471–481CrossRefGoogle Scholar
  104. 104.
    Kashiwagi T, Grulke E, Hilding J, Groth K, Harris R, Butler K, Shields J, Kharchenko S, Douglas J. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer, 2004, 45(12): 4227–4239CrossRefGoogle Scholar
  105. 105.
    Beyer G. Short communication: Carbon nanotubes as flame retardants for polymers. Fire Mater, 2002, 26(6): 291–293CrossRefGoogle Scholar
  106. 106.
    Beyer G. Filler blend of carbon nanotubes and organoclays with improved char as a new flame retardant system for polymers and cable applications. Fire Mater, 2005, 29(2): 61–69CrossRefGoogle Scholar
  107. 107.
    Peeterbroeck S, Laoutid F, Swoboda B, Lopez-Cuesta JM, Moreau N, Nagy JB, Alexandre M, Dubois P. How carbon nanotube crushing can improve flame retardant behaviour in polymer nanocomposites? Macromol Rapid Commun, 2007, 28(3): 260–264CrossRefGoogle Scholar
  108. 108.
    Peeterbroeck S, Alexandre M, Nagy JB, Pirlot C, Fonseca A, Moreau N, Philippin G, Delhalle J, Mekhalif Z, Sporken R, Beyer G, Dubois P. Polymer-layered silicate-carbon nanotube nanocomposites: Unique nanofiller synergistic effect. Compos Sci Technol, 2004, 64(15): 2317–2323CrossRefGoogle Scholar
  109. 109.
    Beyer G. Flame retardancy of nanocomposites based on organoclays and carbon nanotubes with aluminium trihydrate. Polym Adv Technol, 2006, 17(4): 218–225CrossRefGoogle Scholar
  110. 110.
    Peeterbroeck S, Laoutid F, Taulemesse JM, Monteverde T, Lopez-Cuesta JM, Nagy JB, Alexandre M, Dubois P. Mechanical properties and flame-retardant behavior of ethylene vinyl acetate/high-density polyethylene coated carbon nanotube nanocomposites. Adv Funct Mater, 2007, 17(15): 2787–2791CrossRefGoogle Scholar
  111. 111.
    Ma HY, Tong LF, Xu ZB, Fang ZP. Synergistic effect of carbon nanotube and clay for improving the flame retardancy of ABS resin. Nanotechnology, 2007, 18(37), 375602Google Scholar
  112. 112.
    Ma HY, Tong LF, Xu ZB, Fang ZP, Jin YM, Lu FZ. A novel intumescent flame retardant: Synthesis and application in ABS copolymer. Polym Degrad Stab, 2007, 92(4): 720–726CrossRefGoogle Scholar
  113. 113.
    Ma HY, Tong LF, Xu ZB, Fang ZP. Functionalizing carbon nanotubes by grafting on intumescent flame retardant: Nanocomposite synthesis, morphology, rheology, and flammability. Adv Funct Mater, 2008, 18(3): 414–421CrossRefGoogle Scholar
  114. 114.
    Song PA, Xu LH, Guo ZH, Zhang Y, Fang ZP. Flame-retardantwrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of polypropylene. J Mater Chem, 2008, 18(42): 5083–5091CrossRefGoogle Scholar
  115. 115.
    Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF. Radical reactions of C60. Science, 1991, 254(5035): 1183–1185CrossRefGoogle Scholar
  116. 116.
    Song PA, Liu H, Shen Y, Du BX, Fang ZP, Wu Y. Fabrication of dendrimer-like fullerene (C60)-Decorated oligomeric intumescent flame retardant for reducing the thermal oxidation and flammability of polypropylene nanocomposites. J Mater Chem, 2009, 19(9): 1305–1313CrossRefGoogle Scholar
  117. 117.
    Song PA, Zhu Y, Tong LF, Fang ZP. C-60 reduces the flammability of polypropylene nanocomposites by in situ forming a gelled-ball network. Nanotechnology, 2008, 19(22): 225707CrossRefGoogle Scholar
  118. 118.
    Song PA, Shen Y, Du BX, Guo ZH, Fang ZP. Fabrication of fullerene-decorated carbon nanotubes and their application in flame-retarding polypropylene. Nanoscale, 2009, 1(1): 118–121CrossRefGoogle Scholar
  119. 119.
    Devaux E, Rochery M, Bourbigot S. Polyurethane/clay and polyurethane/POSS nanocomposites as flame retarded coating for polyester and cotton fabrics. Fire Mater, 2002, 26(4–5): 149–154CrossRefGoogle Scholar
  120. 120.
    Yei DR, Kuo SW, Su YC, Chang FC. Enhanced thermal properties of PS nanocomposites formed from inorganic POSS-treated montmorillonite. Polymer, 2004, 45(8): 2633–2640CrossRefGoogle Scholar
  121. 121.
    Fina A, Tabuani D, Camino G, Abbenhuis HCL. Metal functionalized POSS as fire retardants in polypropylene. Polym Degrad Stab, 2006, 91: 2275–2281CrossRefGoogle Scholar
  122. 122.
    Fina A, Tabuani D, Frache A, Camino G. Polypropylene metal functionalised POSS nanocomposites: A study by thermogravimetric analysis. Polym Degrad Stab, 2006, 91: 1064–1070CrossRefGoogle Scholar
  123. 123.
    Wang ZY, Han EH, Ke W. Influence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating. Prog Org Coat, 2005, 53(1): 29–37CrossRefGoogle Scholar
  124. 124.
    Du LC, Qu BJ, Zhang M. Thermal properties and combustion characterization of nylon 6/MgAl-LDH nanocomposites via organic modification and melt intercalation. Polym Degrad Stab, 2007, 92(3): 497–502CrossRefGoogle Scholar
  125. 125.
    Yang XB, Fu XK, Niu LM, Rao XP. Progress on intercalation of zirconium hydrogen phosphate and its derivatives (in Chinese). Chemistry, 2005, 68: 1–8Google Scholar
  126. 126.
    Zhang R, Hu Y, Wang SL. Synthesis of polyacrylamide/alpha- zirconium phosphate nanocomposites by in situ intercalative polymerization and the characterization of its structure (in Chinese). Chem J Chinese Univ, 2005, 26(11): 2173–2175Google Scholar
  127. 127.
    Lewin M, Pearce EM, Levon K, Mey-Marom A, Zammarano M, Wilkie CA, Jang BN. Nanocomposites at elevated temperatures: Migration and structural changes. Polym Adv Technol, 2006, 17(4): 226–234CrossRefGoogle Scholar
  128. 128.
    Kashiwagi T, Du FM, Douglas JF, Winey KI, Harris RH, Shields JR. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat Mater, 2005, 4(12): 928–933CrossRefGoogle Scholar
  129. 129.
    Lewin M. Unsolved problems and unanswered questions in flame retardance of polymers. Polym Degrad Stab, 2005, 88: 13–19CrossRefGoogle Scholar
  130. 130.
    Bourbigot S, Le Bras M, Duquesne S, Rochery M. Recent advances for intumescent polymers. Macromol Mater Eng, 2004, 289(6): 499–511CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Institute of Polymer CompositesZhejiang UniversityHangzhouChina
  2. 2.Laboratory of Polymer Materials and Engineering, Ningbo Institute of TechnologyZhejiang UniversityNingboChina
  3. 3.Department of Biological and Materials ScienceUniversity of MichiganAnn ArborUSA

Personalised recommendations