Science China Chemistry

, Volume 53, Issue 9, pp 2039–2046 | Cite as

Keggin-type H4PVMo11O40-based catalysts for the isobutane selective oxidation

  • Sébastien Paul
  • Wei Chu
  • Manzoor Sultan
  • Elisabeth Bordes-Richard
Articles

Abstract

Cesium heteropolysalts Cs3PMo12O40 and HCs3PVMo11O40 were synthesized by modifying the preparation conditions in order to get materials with a much higher surface area than the original Keggin-type heteropolyacids (H3PMo12O40 and H4PVMo11O40). These solids were used as carriers for the dispersion of H4PVMo11O40 heteropolyacid by the incipient wetness impregnation technique. The textural and structural properties of supports and catalysts were examined by scanning electron microscopy, N2 adsorption-desorption isotherms and Raman spectroscopy. The supported catalysts were studied before and after red/ox pretreatments by X-ray photoelectron spectroscopy, which showed that both the surface composition and oxidized to reduced species ratio depend on the used carrier. The catalytic performances of these novel supported catalysts in the selective oxidation of isobutane to methacrylic acid and methacrolein were studied. The best catalytic properties were obtained when H4PVMo11O40 was supported on HCs3PVMo11O40. The isobutane conversion and yield of the desired oxygenates increased along the unsupported H4PVMo11O40 < H4PVMo11O40/Cs3PMo12O40 < H4PVMo11O40/HCs3PVMo11O40 series.

Keywords

cesium heteropolysalts supports supported H4PVMo11O40 red/ox XPS isobutane selective oxidation Keggin-type heteropolycompounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cavani F, Mezzogori R, Pigamo A, Trifirò F, Etienne E. Main aspects of the selective oxidation of isobutane to methacrylic acid catalyzed by Keggin-type polyoxometalates. Catal Today, 2001, 71: 97–110CrossRefGoogle Scholar
  2. 2.
    Dimitratos N, Védrine J C. Effect of Brønsted acidity in propane oxidation over Cs2.5H1.5PV1Mo11−xWxO40 polyoxometallate compounds. Catal Commun, 2006, 7: 811–818CrossRefGoogle Scholar
  3. 3.
    Dimitratos N, Védrine J C. Study of Ga modified Cs2.5H1.5PV1-Mo11O40 heteropolyoxometallates for propane selective oxidation. J Mol Cat A Chem, 2006, 255: 184–192CrossRefGoogle Scholar
  4. 4.
    Sultan M, Paul S, Fournier M, Vanhove D. Evaluation and design of heteropolycompound catalysts for the selective oxidation of isobutane into methacrylic acid. Appl Catal A Gen, 2004, 259: 141–152CrossRefGoogle Scholar
  5. 5.
    Ballarini N, Candiracci F, Cavani F, Degrand H, Dubois J-L, Lucarelli G, Margotti M, Patinet A, Pigamo A, Trifirò F. The dispersion of Keggin-type P/Mo polyoxometalates inside silica gel, and the preparation of catalysts for the oxidation of isobutane to methacrolein and methacrylic acid. Appl Catal A Gen, 2007, 325: 263–269CrossRefGoogle Scholar
  6. 6.
    Knapp C, Ui T, Nagai K, Mizuno N. Stability of iron in the Keggin anion of heteropoly acid catalysts for selective oxidation of isobutane. Catal Today, 2001, 71: 111–119CrossRefGoogle Scholar
  7. 7.
    Langpape M, Millet J-M. Effect of iron counter-ions on the redox properties of the Keggin-type molybdophosphoric heteropolyacid: Part I. An experimental study on isobutane oxidation catalysts. Appl Catal A Gen, 2000, 200: 89–101CrossRefGoogle Scholar
  8. 8.
    Langpape M, Millet J-M, Ozkan US, Delichère P. Study of cesium or cesium-transition metal-substituted Keggin-type phosphomolybdic acid as isobutane oxidation catalysts: II. Redox and catalytic properties. J Catal, 1999, 182: 148–155CrossRefGoogle Scholar
  9. 9.
    Popa A, Sasca V, Kis EE. Marinkovic-Neducin R, Bokorov MT, Halasz J. Structure and texture of some keggin type heteropolyacids supported on silica and titania. J Optoelec Adv Mat, 2005, 76: 3169–3177Google Scholar
  10. 10.
    Vazquez PG, Blanco MN, Caceres CV. Catalysts based on supported 12-molybdophosphoric acid. Catal Lett, 1999, 60: 205–215CrossRefGoogle Scholar
  11. 11.
    Pizzio LR, Caceres CV, Blanco MN. Acid catalysts prepared by impregnation of tungstophosphoric acid solutions on different supports. Appl Catal A Gen, 1998, 167: 283–294CrossRefGoogle Scholar
  12. 12.
    Desquilles C, Bartoli MJ, Bordes E, Hecquet G, Courtine P. Oxidehydrogenation of isobutyric acid by heteropolyacids: Effect of alkali containing supports. Erdol Erdgas Kohle, 1993, 109(3): 130–133Google Scholar
  13. 13.
    Bartoli MJ, Monceaux L, Bordes E, Hecquet G, Courtine P. Stabilization of heteropolyacids by various supports. Stud Surf Sci Catal, 1992, 72: 81–90CrossRefGoogle Scholar
  14. 14.
    Yang W, Billy J, Ben Taârit Y, Védrine JC, Essayem N. H3PW12O40 supported on Cs modified mesoporous silica: Catalytic activity in n-butane isomerisation and in situ FTIR study: Comparison with microporous CsxH3−xPW12O40. Catal Today, 2002, 73: 153–165CrossRefGoogle Scholar
  15. 15.
    Bruckman K, Haber J, Serwicka EM. Acid-base and oxidation catalysis on heteropolysalts with surface acid layers. Farad Disc Chem Soc, 1989, 87: 173–187CrossRefGoogle Scholar
  16. 16.
    Black JB, Clayden NJ, Gai PL, Scott JD, Serwicka EM, Goodenough JB. Acrolein oxidation over 12-molybdophosphates: I. Characterization of the catalyst. J Catal, 1987, 106: 1–15CrossRefGoogle Scholar
  17. 17.
    Okuhara R, Nishimura T, Watanabe H, Misono M. Insoluble heteropoly compounds as highly active catalysts for liquid-phase reactions. J Mol Catal, 1992, 74: 247–256CrossRefGoogle Scholar
  18. 18.
    Staroverova IN, Yu Kutyrev M, Yu Stakheev A. Oxidation of methacrolein to methacrylic acid on phosphomolybdic acid modified by alkali metal ions and NH4+. Kin I Katal, 1992, 33(1): 127Google Scholar
  19. 19.
    Volpe AF, Lyons JE, Ellis PE, Karmakar S. Partial oxidation of lower alkanes over polyoxometallate catalysts. Prepr Am Chem Soc, Div Pet Chem, 1999, 44(2): 156Google Scholar
  20. 20.
    Lapham S, Moffat JB. Preparative effects on the surface area and pore structure of microporous heteropoly oxometalates. Langmuir, 1991, 7, 2273–2278CrossRefGoogle Scholar
  21. 21.
    Paul S, Dubromez V, Zair L, Fournier M, Vanhove D. Control of the textural properties of cesium 12-molybdophosphate-based supports. Stud Surf Sci Catal, 2002, 143: 481–488CrossRefGoogle Scholar
  22. 22.
    Karmakar S, Volpe AF, Ellis P, Lyons JE. Heteropoly acids supported on polyoxometallate salts and their preparation. US Patent 6043184. 2000-03-28Google Scholar
  23. 23.
    Mc Garvey GB, Moffat JB. The oxidative dehydrogenation of isobutyric acid to methacrylic acid on ion exchange modified 12-heteropoly oxometalates. J Catal, 1991, 132: 100–116CrossRefGoogle Scholar
  24. 24.
    Akimoto M, Tsuchida Y, Sato K, Echigoya E. 12-Heteropolymolybdates as catalysts for vapor-phase oxidative dehydrogenation of isobutyric acid: I. Alkali and alkaline-earth metal salts. J Catal, 1981, 72: 83–94CrossRefGoogle Scholar
  25. 25.
    Park GI, Song IK, Lee WY. Oxidative dehydrogenation of isobutyric acid over 12-molybdophosphoric acids modified by tetrahydrofuran. J Mol Catal A Chem, 2001, 168: 115–121CrossRefGoogle Scholar
  26. 26.
    Hu J, Burns R C. The effect of cation type and H+ on the catalytic activity of the Keggin anion [PMo12O40]3− in the oxidative dehydrogenation of isobutyraldehyde. J Catal, 2000, 195: 360–375CrossRefGoogle Scholar
  27. 27.
    Mc Monagle JB, Moffat JB. Pore structures of the monovalent salts of the heteropoly compounds, 12-tungstophosphoric and 12-molybdophosphoric acid. J Coll Interf Sci, 1984, 101(2): 479–488CrossRefGoogle Scholar
  28. 28.
    Mori H, Mizuno N, Misono M. Factors controlling the selectivity of the oxidation of acetaldehyde over heteropoly compounds. J Catal, 1991, 131: 133–142CrossRefGoogle Scholar
  29. 29.
    Eguchi K, Aso I, Yamazoe N, Seiyama T. Catalytic activity of various 12-molybdophosphates for methacrolein oxidation. Chem Lett, 1979, 1345–1346Google Scholar
  30. 30.
    Mizuno N, Tateishi M, Iwamoto M. Oxidation of isobutane catalyzed by CsxH3−xPMo12O40-based heteropoly compounds. J Catal, 1996, 163: 87–94CrossRefGoogle Scholar
  31. 31.
    Ai M. Characteristics of heteropoly compounds as catalysts for selective oxidation. J Catal, 1981, 71: 88–98CrossRefGoogle Scholar
  32. 32.
    Marchal-Roch C, Laronze N, Villaneau R, Guillou N, Teze A, Herve G. Effects of NH4+, Cs+, and H+ counterions of the molybdophosphate anion in the oxidative dehydrogenation of isobutyric acid. J Catal, 2000, 190: 173–181CrossRefGoogle Scholar
  33. 33.
    Bonardet J-L, Fraissard J, Mc Garvey GB, Moffat JB. A comparativestudy of the microporosity of the ammonium and cesium salts of 12-tungstophosphoric, 12-molybdophosphoric, and 12-tungstosilicic acids by Xe129 NMR. J Catal, 1995, 151: 147–154CrossRefGoogle Scholar
  34. 34.
    Langpape M, Millet J-M, Ozkan US, Boudeulle M. Study of cesium or cesium-transition metal-substituted Keggin-type phosphomolybdic acid as isobutane oxidation catalysts: I. Structural characterization. J Catal, 1999, 181, 80–90CrossRefGoogle Scholar
  35. 35.
    Sultan M, Paul S, Vanhove D. Kinetic effects of chemical modifications of PMo12 catalysts for the selective oxidation of isobutene. Stud Surf Sci Catal, 1999, 122: 283–290CrossRefGoogle Scholar
  36. 36.
    Paul S, Le Courtois V, Vanhove D. Kinetic investigation of isobutane selective oxidation over a heteropolyanion catalyst. Ind Eng Chem Res, 1997, 36(8):3391–3399CrossRefGoogle Scholar
  37. 37.
    Rocchiccioli-Deltcheff C, Fournier M, Franck R, Thouvenot R. Vibrational investigations of polyoxometalates. 2. Evidence for anionanion interactions in molybdenum(VI) and tungsten(VI) compounds related to the Keggin structure. Inorg Chem, 1983, 22: 207–216CrossRefGoogle Scholar
  38. 38.
    Brückman K, Haber J, Serwicka EM, Yurchenko EN, Lazarenko TP. Laser Raman and DTA/TGA study of H3+nPVnMo12-nO40 heteropolyacids pure and supported on K3PMo12O40. Catal Lett, 1990, 4: 181–189CrossRefGoogle Scholar
  39. 39.
    Kozhevnikov IV. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem Rev, 1998, 98(1): 171–198CrossRefGoogle Scholar
  40. 40.
    Hu C, Hashimoto M, Okuhara T, Misono M. Catalysis by heteropoly compounds XXII. Reactions of esters and esterification catalyzed by heteropolyacids in a homogeneous liquid-phase effects of the central atom of heteropolyanions having tungsten as the addenda atom. J Catal, 1993, 143: 437–448CrossRefGoogle Scholar
  41. 41.
    Feumi-Jantou C. Caracterisation, stabilite thermique de l’acide 1-vanado-11 molybdophosphorique et des sels de pyridinium: etude de l’adsorption de l’acide isobutyrique par spectroscopies r.p.e. et i.r. PhD thesis. Université Paris VI, France 1989Google Scholar
  42. 42.
    Rabia C, Bettahar MM, Launay S, Hervé G, Fournier M. Preparation et caracterisation de l’acide 1-vanado-11-molybdophosphorique et de ses sels alcalins. J Chim Phys, 1995, 92: 1442Google Scholar
  43. 43.
    Brunauer S, Emmet PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc, 1938, 60: 309–319CrossRefGoogle Scholar
  44. 44.
    Barret EP, Joyner LP, Halenda PO. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc, 1951, 73: 373–380CrossRefGoogle Scholar
  45. 45.
    Chu W, Chernavskii PA, Gengembre L, Pankina PA, Fongarland P, Khodakov A. Cobalt species in promoted cobalt alumina-supported Fischer-Tropsch catalysts. J Catal, 2007, 252: 215–230CrossRefGoogle Scholar
  46. 46.
    Roussel M, Bouchard M, Bordes-Richard E, Karim K, Al-Sayari S. Oxidation of ethane to ethylene and acetic acid by MoVNbO catalysts. Catal Today, 2005, 99, 77–87; MoVO-based catalysts for the oxidation of ethane to ethylene and acetic acid: Influence of niobium and/or palladium on physicochemical and catalytic properties. Appl Catal A Gen, 2006, 308: 62–74CrossRefGoogle Scholar
  47. 47.
    Enache DI, Bordes-Richard E, Ensuque A, Bozon-Verduraz F. Vanadium oxide catalysts supported on zirconia and titania: I. Preparation and characterization. Appl Catal A Gen, 2004, 278: 93–102; ibid, Vanadium oxide catalysts supported on titania and zirconia: II. Selective oxidation of ethane to acetic acid and ethylene. 103–110Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sébastien Paul
    • 1
  • Wei Chu
    • 2
  • Manzoor Sultan
    • 1
  • Elisabeth Bordes-Richard
    • 3
  1. 1.ECLille, Unité de Catalyse et de Chimie du Solide (UMR CNRS 8181)Université Lille Nord de FranceVilleneuve d’AscqFrance
  2. 2.Key Laboratory Green Chemistry & Technology, Ministry of Education; College of Chemical EngineeringSichuan UniversityChengduChina
  3. 3.ENSCL, Unité de Catalyse et de Chimie du Solide (UMR CNRS 8181)Université Lille Nord de FranceVilleneuve d’AscqFrance

Personalised recommendations