Science China Chemistry

, Volume 53, Issue 9, pp 1853–1861 | Cite as

Self-assembly of amphiphilic molecules: A review on the recent computer simulation results

  • XiaoMing Chen
  • Wei Dong
  • XianRen Zhang


We provided a short review on the recent progresses in computer simulations of adsorption and self-assembly of amphiphilic molecules. Owing to the extensive applications of amphiphilic molecules, it is very important to understand thoroughly the effects of the detailed chemistry, solid surfaces and the degree of confinement on the aggregate morphologies and kinetics of self-assembly for amphiphilic systems. In this review we paid special attention on (i) morphologies of adsorbed surfactants on solid surfaces, (ii) self-assembly in confined systems, and (iii) kinetic processes involving amphiphilic molecules.


amphiphilic molecules computer simulation self-assembly adsorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ash M, Ash I. Handbook of Industrial Surfactants. Aldershot: Gower Press, 1993Google Scholar
  2. 2.
    Sachs JN, Crozier PS, Woolf TB. Atomistic simulations of biologically realistic transmembrane potential gradients. J Chem Phys, 2004, 121: 10847–10851CrossRefGoogle Scholar
  3. 3.
    Pickholz M, Saiz L, Klein ML. Concentration effects of volatile anesthetics on the properties of model membrane: A coarse grain approach. Biophys J, 2005, 88: 1524–1534CrossRefGoogle Scholar
  4. 4.
    Nielsen SO, Ensing B, Ortiz V, Moore PB, Klein ML. Lipid bilayer perturbations around a transmembrane nanotube: A coarse grain molecular dynamics study. Biophys J, 2005, 88: 3822–3828CrossRefGoogle Scholar
  5. 5.
    Vernier PT, Ziegler MJ, Sun Y, Gundersen MA, Tieleman DP. Nanopore-facilitated, voltage-driven phosphatidylserine translocation in lipid bilayers — In cells and in silico. Phys Biol, 2006, 3: 233–247CrossRefGoogle Scholar
  6. 6.
    Davis CH, Nie H, Dokholyan NV. Insights into thermophilic archaebacterial membrane stability from simplified models of lipid membranes. Phys Rev E, 2007, 75: 051921CrossRefGoogle Scholar
  7. 7.
    Lu DN, Liu Z, Wu, JZ. Molecular dynamics for surfactant-assisted protein refolding. J Chem Phys, 2007, 126: 064906CrossRefGoogle Scholar
  8. 8.
    Bond PJ, Holyoake J, Ivetac A, Khalid S, Sansom MSP. Coarse-grained molecular dynamics simulations of membrane proteins and peptides. J Struct Biol, 2007, 157: 593–605CrossRefGoogle Scholar
  9. 9.
    Gauthier A, Joos B. Stretching effects on the permeability of water molecules across a lipid bilayer. J Chem Phys, 2007, 127: 105104CrossRefGoogle Scholar
  10. 10.
    de Meyer F, Smit B. Effect of cholesterol on the structure of a phospholipid bilayer. Proc Nat Acad Sci USA, 2009, 106: 103654–3658CrossRefGoogle Scholar
  11. 11.
    Goni FM, Alonso A, Bagatolli LA, Brown RE, Marsh D, Prieto M, Thewalt JL. Phase diagrams of lipid mixtures relevant to the study of membrane rafts. BBA-Mol Cell Biol L, 2008, 1781: 665–684Google Scholar
  12. 12.
    Risselada HJ, Marrink SJ. The molecular face of lipid rafts in model membranes. Proc Nat Acad Sci USA, 2008, 105: 17367–17372CrossRefGoogle Scholar
  13. 13.
    Scott KA, Bond PJ, Ivetac A, Chetwynd AP, Khalid S, Sansom MSP. Coarse-grained MD simulations of membrane protein-bilayer selfassembly. Structure, 2008, 16: 621–630CrossRefGoogle Scholar
  14. 14.
    Risselada HJ, Marrink SJ. The molecular face of lipid rafts in model membranes. Proc Nat Acad Sci USA, 2008, 105: 17367–17372CrossRefGoogle Scholar
  15. 15.
    Klamt A, Huniar U, Spycher S, Keldenich, J. COSMOmic: A mechanistic approach to the calculation of membrane-water partition coefficients and internal distributions within membranes and micelles. J Phys Chem B, 2008, 112: 12148–12157CrossRefGoogle Scholar
  16. 16.
    Khalfa A, Treptow W, Maigret B, Tarek M. Self assembly of peptides near or within membranes using coarse grained MD simulations. J Chem Phys, 2009, 358: 161–170CrossRefGoogle Scholar
  17. 17.
    Wang ZL, He XH. Dynamics of vesicle formation from lipid droplets: Mechanism and controllability. J Chem Phys, 2009, 130: 094905CrossRefGoogle Scholar
  18. 18.
    Li SY, Zhang XR, Wang WC. Coarse-grained model for mechanosensitive ion channels. J Phys Chem B, 2009, 113: 14431–14438CrossRefGoogle Scholar
  19. 19.
    Li SY, Zheng FX, Zhang XR, Wang WC. Stability and rupture of archaebacterial cell membrane: A model study. J Phys Chem B, 2009, 113: 1143–1152CrossRefGoogle Scholar
  20. 20.
    Myers D. Surfactant Science and Technology. 2nd Ed. New York: Wiley-VCH, 1999Google Scholar
  21. 21.
    Holmberg K, Jonsson B, Kronberg B, Lindman B. Surfactants and Polymers in Aqueous Solution. 2nd Ed. England: John Wiley & Sons Ltd, 2003Google Scholar
  22. 22.
    Zheng FX, Zhang XR, Wang WC. Adsorption and morphology transition of surfactants on hydrophobic surfaces: A lattice Monte Carlo study. Langmuir, 2006, 22: 11214–11223CrossRefGoogle Scholar
  23. 23.
    Srinivas G, Nielsen SO, Moore PB, Klein ML. Molecular dynamics simulations of surfactant self-organization at a solid-liquid interface. J Am Chem Soc, 2006, 128: 848–853CrossRefGoogle Scholar
  24. 24.
    Yoshii N, Okazaki S. A molecular dynamics study of surface structure of spherical SDS micelles. Chem Phys Lett, 2006, 426: 66–70CrossRefGoogle Scholar
  25. 25.
    Shah K, Chiu P, Sinnott SB. Comparison of morphology and mechanical properties of surfactant aggregates at water-silica and watergraphite interfaces from molecular dynamics simulations. J Colloid Interf Sci, 2006, 296: 342–349CrossRefGoogle Scholar
  26. 26.
    Du H, Miller JD. Adsorption states of amphipatic solutes at the surface of naturally hydrophobic minerals: A molecular dynamics simulation study. Langmuir, 2007, 23: 11587–11596CrossRefGoogle Scholar
  27. 27.
    Dominguez H. Self-aggregation of the SDS surfactant at a solid-liquid interface. J Phys Chem B, 2007, 111: 4054–4059CrossRefGoogle Scholar
  28. 28.
    Heinz H, Vaia RA, Krishnamoorti R, Farmer BL. Self-assembly of alkylammonium chains on montmorillonite: Effect of chain length, head group structure, and cation exchange capacity. Chem Mater, 2007, 19: 59–68CrossRefGoogle Scholar
  29. 29.
    Xu ZJ, Yang XN, Yang Z. On the mechanism of surfactant adsorption on solid surfaces: Free-energy investigations. J Phys Chem B, 2008, 112: 13802–13811CrossRefGoogle Scholar
  30. 30.
    Jodar-Reyes AB, Lyklema J, Leermakers FAM. Comparison between inhomogeneous adsorption of charged surfactants on air-water and on solid-water interfaces by self-consistent field theory. Langmuir, 2008, 24: 6496–6503CrossRefGoogle Scholar
  31. 31.
    Heinz H, Vaia RA, Farmer BL. Relation between packing density and thermal transitions of alkyl chains on layered silicate and metal surfaces. Langmuir, 2008, 24: 3727–3733CrossRefGoogle Scholar
  32. 32.
    Sammalkorpi M, Panagiotopoulos AZ, Haataja M. Structure and dynamics of surfactant and hydrocarbon aggregates on graphite: A molecular dynamics simulation study. J Phys Chem B, 2008, 112: 2915–2921CrossRefGoogle Scholar
  33. 33.
    Zheng FX, Zhang XR, Wang WC. Comment on Monte Carlo simulation of surfactant adsorption on hydrophilic surfaces. Langmuir, 2009, 25: 7766–7767CrossRefGoogle Scholar
  34. 34.
    Meleshyn A. Cetylpyridinium chloride at the mica-water interface: Incomplete monolayer and bilayer structures. Langmuir, 2009, 25: 881–890CrossRefGoogle Scholar
  35. 35.
    Fernandez-Cata G, Perez-Gramatges A, Alvarez LJ, Comas-Rojas H, Zicovich-Wilson, CM. On the interaction between silica surfaces and surfactants. A 2D periodic B3LYP investigation. J Phys Chem C, 2009, 113: 13309–13316CrossRefGoogle Scholar
  36. 36.
    Zehl T, Wahab M, Schiller P, Mogel HJ. Monte Carlo simulation of surfactant adsorption on hydrophilic surfaces. Langmuir, 2009, 25: 2090–2910CrossRefGoogle Scholar
  37. 37.
    Israelachvili JN, Mitchell DJ, Ninham BW. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2, 1976, 72: 1525–1568CrossRefGoogle Scholar
  38. 38.
    Israelachvili JN. Intermolecular and Surface Forces. 2nd Ed. London: Academic Press, 1992Google Scholar
  39. 39.
    Reimer U, Wahab M, Schiller P, Mogel HJ. Monte Carlo study of surfactant adsorption on heterogeneous solid surfaces. Langmuir, 2005, 21: 1640–1646CrossRefGoogle Scholar
  40. 40.
    Zhang XR, Chen BH, Dong W, Wang WC. Surfactant adsorption on solid surfaces: Recognition between heterogeneous surfaces and adsorbed surfactant aggregates. Langmuir, 2007, 23: 7433–7435CrossRefGoogle Scholar
  41. 41.
    Sammalkorpi M, Panagiotopoulos AZ, Haataja M. Surfactant and hydrocarbon aggregates on defective graphite surface: Structure and dynamics. J Phys Chem B, 2008, 112: 12954–12961CrossRefGoogle Scholar
  42. 42.
    Luo M, Dai LL. Molecular dynamics simulations of surfactant and nanoparticle self-assembly at liquid-liquid interfaces. J Phys: Condens Matter, 2007, 19: 375109CrossRefGoogle Scholar
  43. 43.
    Li Y, He XJ, Cao WL, Zhao GQ, Tian XX, Cui XH. Molecular behavior and synergistic effects between sodium dodecylbenzene sulfonate and Triton X-100 at oil/water interface. J Colloid Interf Sci, 2007, 307: 215–220CrossRefGoogle Scholar
  44. 44.
    Ma H, Luo MX, Dai LL. Influences of surfactant and nanoparticle assembly on effective interfacial tensions. Phys Chem Chem Phys, 2008, 10: 2207–2213CrossRefGoogle Scholar
  45. 45.
    Gupta A, Chauhan A, Kopelevich DI. Molecular modeling of surfactant covered oil-water interfaces: Dynamics, microstructure, and barrier for mass transport. J Chem Phys, 2008, 128: 234709CrossRefGoogle Scholar
  46. 46.
    Gupta A, Chauhan A, Kopelevich DI. Molecular transport across fluid interfaces: Coupling between solute dynamics and interface fluctuations. Phys Rev E, 2008, 78: 041605CrossRefGoogle Scholar
  47. 47.
    Hantal G, Partay LB, Varga I, Jedlovszky P, Gilanyi T. Counterion and surface density dependence of the adsorption layer of ionic surfactants at the vapor-aqueous solution interface: A computer simulation study. J Phys Chem B, 2007, 111: 1769–1774CrossRefGoogle Scholar
  48. 48.
    Howes AJ, Radke CJ. Monte Carlo simulations of Lennard-Jones nonionic surfactant adsorption at the liquid/vapor interface. Langmuir, 2007, 23: 1835–1844CrossRefGoogle Scholar
  49. 49.
    Howes AJ, Radke CJ. Monte Carlo Simulations of mixed lennardjones nonionic surfactant adsorption at the liquid/vapor interface. Langmuir, 2007, 23: 11580–11586CrossRefGoogle Scholar
  50. 50.
    Rodriguez J, Laria D. Surface behavior of N-dodecylimidazole at air/water interfaces. J Phys Chem C, 2007, 111: 908–915CrossRefGoogle Scholar
  51. 51.
    Gu C, Lustig S, Jackson C, Trout BL. Design of surface active soluble peptide molecules at the air/water interface. J Phys Chem B, 2008, 112: 2970–2980CrossRefGoogle Scholar
  52. 52.
    Cuny V, Antoni M, Arbelot M, Liggieri L. Structural properties and dynamics of C12E5 molecules adsorbed at water/air interfaces: A molecular dynamic study. Colloid Surf A: Physicochem Eng Aspects, 2008, 323: 180–191CrossRefGoogle Scholar
  53. 53.
    Larson RG, Scriven LE, Davis HT. Monte-Carlo simulation of model amphiphilic oil-water systems. J Chem Phys, 1985, 83: 2411–2420CrossRefGoogle Scholar
  54. 54.
    Larson RG. Simulations of self-assembly. Curr Opin Colloid Interf Sci, 1997, 2: 361–364CrossRefGoogle Scholar
  55. 55.
    Shelley JC, Shelley MY. Computer simulation of surfactant solutions. Curr Opin Colloid interface Sci, 2000, 5: 101–110CrossRefGoogle Scholar
  56. 56.
    Rajagopalan R. Simulations of self-assembling systems. Curr Opin Colliod Interf Sci, 2001, 6: 357–365CrossRefGoogle Scholar
  57. 57.
    Floriano MA, Caponetti E, Panagiotopoulos AZ. Micellization in model surfactant systems. Langmuir, 1999, 15: 3143–3151CrossRefGoogle Scholar
  58. 58.
    Lisal M, Hall CK, Gubbins KE, Panagiotopoulos AZ. Self-assembly of surfactants in a supercritical solvent from lattice Monte Carlo simulations. J Chem Phys, 2002,116: 1171–1184CrossRefGoogle Scholar
  59. 59.
    Panagiotopoulos AZ, Floriano MA, Kumar SK. Micellization and phase separation of diblock and triblock model surfactants. Langmuir, 2002, 18: 2940–2948CrossRefGoogle Scholar
  60. 60.
    Kim SY, Panagiotopoulos AZ, Floriano MA. Ternary oil-wateramphiphile systems: Self-assembly and phase equilibria. Molec Phys, 2002,100: 2213–2220CrossRefGoogle Scholar
  61. 61.
    Kopelevich DI, Panagiotopoulos AZ, Kevrekidis IG. Coarse-grained kinetic computations for a micellar system. J Chem Phys, 2005, 122: 044907CrossRefGoogle Scholar
  62. 62.
    Kopelevich DI, Panagiotopoulos AZ, Kevrekidis IG. Coarse-grained kinetic computations for rare events: Application to micelle formation. J Chem Phys, 2005, 122: 044908CrossRefGoogle Scholar
  63. 63.
    Atkin R, Craig VSJ, Wanless EJ, Biggs S. Mechanism of cationic surfactant adsorption at the solid-aqueous interface. Adv Colloid Interf Sci, 2003, 103: 219–304CrossRefGoogle Scholar
  64. 64.
    Brinker CF, Dunphy DR. Morphological control of surfactant-templated metal oxide films. Curr Opin Colloid Interf Sci, 2006, 11, 126–132CrossRefGoogle Scholar
  65. 65.
    Koganti VR, Dunphy D, Gowrishankar V, McGehee MD, Li X, Wang J, Rankin SE. Generalized coating route to silica and titania films with orthogonally tilted cylindrical nanopore arrays. Nano Lett, 2006, 6: 2567–2570CrossRefGoogle Scholar
  66. 66.
    Richman EK, Brezesinski T, Tolbert SH. Vertically oriented hexagonal mesoporous films formed through nanometre-scale epitaxy. Nat Mater, 2008, 7: 712–717CrossRefGoogle Scholar
  67. 67.
    Li Z, Zhang XR, Chen BH. Computer simulation of the epitaxy of surfactant-templated inorganic nanomaterials on patterned surfaces. Langmuir, 2009, 25: 1998–2006CrossRefGoogle Scholar
  68. 68.
    Bourov GK, Bhattacharya A. Effect of packing parameter on phase diagram of amphiphiles: An off-lattice Gibbs ensemble approach. J Chem Phys, 2007, 127: 244905CrossRefGoogle Scholar
  69. 69.
    Hynninen AP, Panagiotopoulos AZ. Global phase diagram for the honeycomb potential. J Chem Phys, 2006, 125: 024505CrossRefGoogle Scholar
  70. 70.
    Lenart PJ, Panagiotopoulos AZ. Phase behavior of binary stockmayer and polarizable lennard-jones fluid mixtures using adiabatic nuclear and electronic sampling. Ind Eng Chem Res, 2006, 45: 6929–6938CrossRefGoogle Scholar
  71. 71.
    Davis JR, Piccarreta MV, Rauch RB, Vanderlick TK, Panagiotopoulos AZ. Phase behavior of rigid objects on a cubic lattice. Ind Eng Chem Res, 2006, 45: 5421–5425CrossRefGoogle Scholar
  72. 72.
    Diehl A, Panagiotopoulos AZ. Phase behavior of the lattice restricted primitive model with nearest neighbor exclusion. J Chem Phys, 2006, 124: 194509CrossRefGoogle Scholar
  73. 73.
    Ramirez E, Santana A, Cruz A, Lopez GE. Phase equilibria in model surfactants forming Langmuir monolayers. J Chem Phys, 2007, 127: 224703CrossRefGoogle Scholar
  74. 74.
    Patti A, Siperstein FR, Mackie AD. Phase behavior of model surfactants in the presence of hybrid particles. J Phys Chem C, 2007, 111: 16035–16044CrossRefGoogle Scholar
  75. 75.
    Hynninen AP, Panagiotopoulos AZ. Disappearance of the gas-liquid phase transition for highly charged colloids. Phys Rev Lett, 2007, 98: 198301CrossRefGoogle Scholar
  76. 76.
    Zheng FX, Zhang XR, Wang WC. Macrophase and microphase separations for surfactants adsorbed on solid surfaces: A gauge cell Monte Carlo study in the lattice model. Langmuir, 2008, 24: 4661–4669CrossRefGoogle Scholar
  77. 77.
    Müller M, Katsov K, Schick M. Biological and synthetic membranes: What can be learned from a coarse-grained description? Phys Rep, 2006, 434: 113–176CrossRefGoogle Scholar
  78. 78.
    Arya G, Panagiotopoulos AZ. Molecular modeling of shear-induced alignment of cylindrical micelles. Comp Phys Comm, 2005, 169: 262–266CrossRefGoogle Scholar
  79. 79.
    He H, Galy J, Gerard JF. Molecular simulation of the interlayer structure and the mobility of alkyl chains in HDTMA+/montmorillonite hybrids. J Phys Chem B, 2005, 109: 13301–13306CrossRefGoogle Scholar
  80. 80.
    Koopal LK, Leermakers FAM, Lokar WJ, Ducker WA. Confinement-induced phase transition and hysteresis in colloidal forces for surfactant layers on hydrophobic surfaces. Langmuir, 2005, 21: 10089–10095CrossRefGoogle Scholar
  81. 81.
    Leermakers FAM, Koopal LK, Lokar WJ, Ducker WA. Modeling of confinement-induced phase transitions for surfactant layers on amphiphilic surfaces. Langmuir, 2005, 21: 11534–11545CrossRefGoogle Scholar
  82. 82.
    Xu ZJ, Yang XN, Yang Z. Adsorption and self-assembly of surfactant/supercritical CO2 systems in confined pores: A molecular dynamics simulation. Langmuir, 2007, 23: 9201–9212CrossRefGoogle Scholar
  83. 83.
    Zhang XR, Chen GJ, Wang WC. Confinement induced critical micelle concentration shift. J Chem Phys, 2007, 127: 034506CrossRefGoogle Scholar
  84. 84.
    Zheng FX, Chen GJ, Zhang XR, Wang WC. A Monte Carlo study of crowding effects on the self-assembly of amphiphilic molecules. J Chem Phys, 2009, 130: 204701CrossRefGoogle Scholar
  85. 85.
    Angelikopoulos P, Bock H. Directed self-assembly of surfactants in carbon nanotube materials. J Phys Chem B, 2008, 112: 13793–13801CrossRefGoogle Scholar
  86. 86.
    Arai N, Yasuoka K, Zeng XC. Self-assembly of surfactants and polymorphic transition in nanotubes. J Am Chem Soc, 2008, 130: 7916–7920CrossRefGoogle Scholar
  87. 87.
    Tummala NR, Striolo A. Curvature effects on the adsorption of aqueous sodium-dodecyl-sulfate surfactants on carbonaceous substrates: Structural features and counterion dynamics. Phys Rev E, 2009, 80: 021408CrossRefGoogle Scholar
  88. 88.
    Pang JY, Xu GY, Yuan SL, Tan YB, He F. Dispersing carbon nanotubes in aqueous solutions by a silicon surfactant: Experimental and molecular dynamics simulation study. Colloid Surf A: Physicochem Eng Aspects, 2009, 350: 101–108CrossRefGoogle Scholar
  89. 89.
    Wang H. Dispersing carbon nanotubes using surfactants. Curr Opin Colloid Interf Sci, 2009, 14: 364–371CrossRefGoogle Scholar
  90. 90.
    Tummala NR, Striolo A. SDS surfactants on carbon nanotubes: Aggregate morphology. ACS NANO, 2009, 3: 595–602CrossRefGoogle Scholar
  91. 91.
    Chen FM, Ye J, Teo MY, Zhao Y, Tan LP, Chen Y, Chan-Park MB, Li LJ. Species-dependent energy transfer of surfactant-dispersed semiconducting single-walled carbon nanotubes. J Phys Chem C, 2009, 113: 20061–20065CrossRefGoogle Scholar
  92. 92.
    Liu LL, Yang XN, Xu ZJ. Gibbs ensemble Monte Carlo simulation of adsorption for model surfactant solution in confined slit pores. J Chem Phys, 2008, 128: 184712CrossRefGoogle Scholar
  93. 93.
    Zheng FX, Zhang XR, Wang WC. Bridge structure: An intermediate state for a morphological transition in confined amphiphile/water systems. J Phys Chem C, 2007, 111: 7144–7151CrossRefGoogle Scholar
  94. 94.
    Yu B, Sun P, Chen T, Jin Q, Ding D, Li B, Shi A. Confinement-induced novel morphologies of block copolymers. Phys Rev Lett, 2006, 96:138306CrossRefGoogle Scholar
  95. 95.
    Wu Y, Cheng G, Katsov K, Sides SW, Wang J, Tang J, Fredrickson GH, Moskovits M, Stucky GD. Composite mesostructures by nano-confinement. Nat Mater, 2004, 3: 816–822CrossRefGoogle Scholar
  96. 96.
    Feng J, Liu H, Hu Y. Micro-phase separation of diblock copolymer in a nanosphere: Dissipative particle dynamics approach. Fluid Pahse Equilibria, 2007, 261: 50–57CrossRefGoogle Scholar
  97. 97.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc, 1992, 114: 10834–10843CrossRefGoogle Scholar
  98. 98.
    Wan Y, Zhao DY. On the controllable soft-templating approach to mesoporous silicates. Chem Rev, 2007, 107: 2821–2860CrossRefGoogle Scholar
  99. 99.
    Wan Y, Yang HF, Zhao DY. “Host-guest” chemistry in the synthesis of ordered nonsiliceous mesoporous materials. Acc Chem Res, 2006, 39: 423–432CrossRefGoogle Scholar
  100. 100.
    Wan Y, Shi YF, Zhao DY. Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chem Commun, 2007, 897-926Google Scholar
  101. 101.
    Jorge M, Gomes JRB, Cordeiro MNDS, Seaton NA. Molecular simulation of silica/surfactant self-assembly in the synthesis of periodic mesoporous silicas. J Am Chem Soc, 2007, 129: 15414–15415CrossRefGoogle Scholar
  102. 102.
    Jorge M, Gomes JRB, Cordeiro MNDS, Seaton NA. Molecular dynamics simulation of the early stages of the synthesis of periodic mesoporous silica. J Phys Chem B, 2009, 113: 708–718CrossRefGoogle Scholar
  103. 103.
    Patti A, Siperstein FR, Mackie AD. Phase behavior of model surfactants in the presence of hybrid particles. J Phys Chem C, 2007, 111: 16035–16044CrossRefGoogle Scholar
  104. 104.
    Patti A, Mackie AD, Zelenak V, Siperstein FR. One-pot synthesis of amino functionalized mesoporous silica materials: Using simulations to understand transitions between different structures. J Mater Chem, 2009, 19: 724–732CrossRefGoogle Scholar
  105. 105.
    Schuth F. Non-siliceous mesostructured and mesoporous materials. Chem Mater, 2001, 13: 3184–3195CrossRefGoogle Scholar
  106. 106.
    Zhang XR, Cao DP, Wang WC. Formation of new morphologies of surfactant-inorganic-water systems under spherical confinements. J Phys Chem C, 2008, 112: 2943–2948CrossRefGoogle Scholar
  107. 107.
    Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363: 603–605CrossRefGoogle Scholar
  108. 108.
    Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J, Talmon Y. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett, 2003, 3: 1379–1382CrossRefGoogle Scholar
  109. 109.
    O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE. Band gap fluorescence from individual single-walled carbon nanotubes. Science, 2002, 297: 593–596CrossRefGoogle Scholar
  110. 110.
    Chang CH, Franses EI. Adsorption dynamics of surfactants at the air/water interface: A critical review of mathematical models, data, and mechanisms. Colloids Surf A, 1995,100: 1–45CrossRefGoogle Scholar
  111. 111.
    Paria S, Khilar KC, A review on experimental studies of surfactant adsorption at the hydrophilic solid-water interface. Adv Colloid Interf Sci, 2004,110: 75–95CrossRefGoogle Scholar
  112. 112.
    Zhang XR, Chen BH, Wang ZH. Computer simulation of adsorption kinetics of surfactants on solid surfaces. J Colloid Interf Sci, 2007, 313: 414–422CrossRefGoogle Scholar
  113. 113.
    Smit B, Esselink K, Hilbers PA J, van Os NM, Rupert LAM, Szleifer I. Computer simulations of surfactant self-assembly. Langmuir, 1993, 9: 9–11CrossRefGoogle Scholar
  114. 114.
    Maillet JB, Lachet V, Coveney PV. Large scale molecular dynamics simulation of self-assembly processes in short and long chain cationic surfactants. Phys Chem Chem Phys, 1999, 1: 5277–5290CrossRefGoogle Scholar
  115. 115.
    Marrink SJ, Tieleman DP, Mark AE. Molecular dynamics simulation of the kinetics of spontaneous micelle formation. J Phys Chem B, 2000, 104: 12165–12173CrossRefGoogle Scholar
  116. 116.
    Jorge M. Molecular Dynamics simulation of self-assembly of n-decyltrimethylammonium bromide micelles. Langmuir, 2008, 24: 5714–5725CrossRefGoogle Scholar
  117. 117.
    Yamamoto S, Hyodo S. Budding and fission dynamics of two-component vesicles. J Chem Phys, 2003, 118: 7937–7943CrossRefGoogle Scholar
  118. 118.
    Fellermann H, Solé RV. Minimal model of self-replicating nanocells: A physically embodied information-free scenario. Philos Trans R Soc Lond B Biol Sci, 2007, 362: 1803–1811CrossRefGoogle Scholar
  119. 119.
    Venturoli M, Sperotto MM, Kranenburg M, Smit B. Mesoscopic models of biological membranes. Phys Rep, 2006, 437: 1–54CrossRefGoogle Scholar
  120. 120.
    Shillcock JC, Lipowsky R. The computational route from bilayer membranes to vesicle fusion. J Phys: Condens Matter, 2006, 18: S1191–S1219CrossRefGoogle Scholar
  121. 121.
    Rharbi Y, Winnik MA. Salt effects on solute exchange in sodium dodecyl sulfate micelles. J Am Chem Soc, 2002, 124: 2082–2083CrossRefGoogle Scholar
  122. 122.
    Rharbi Y, Winnik MA. Salt effects on solute exchange and micelle fission in sodium dodecyl sulfate micelles below the micelle-to-rod transition. J Phys Chem B, 2003, 107: 1491–1501CrossRefGoogle Scholar
  123. 123.
    Pool R, Bolhuis PG. Prediction of an autocatalytic replication mechanism for micelle formation. Phys Rev Lett, 2006, 97: 018302CrossRefGoogle Scholar
  124. 124.
    Pool R, Bolhuis PG. Sampling the kinetic pathways of a micelle fusion and fission transition. J Chem Phys, 2007, 126: 244703CrossRefGoogle Scholar
  125. 125.
    Sammalkorpi M, Karttunen M, Haataja M. Micelle fission through surface instability and formation of an interdigitating stalk. J Am Chem Soc, 2008, 130: 17977–17980CrossRefGoogle Scholar
  126. 126.
    Gao JJ, Li SY, Zhang XR, Wang WC. Computer simulations of micelle fission. Phys Chem Chem Phys, 2010, 12: 3219–3228CrossRefGoogle Scholar
  127. 127.
    Li SY, Zhang XR, Dong W, Wang WC. Computer simulations of solute exchange using micelles by a collision-driven fusion process. Langmuir, 2008, 24: 9344–9353CrossRefGoogle Scholar
  128. 128.
    Kawai-Hirai R, Hirai M. Effect of cations on the structure of sodium bis(2-ethylhexyl) sulfosuccinate water-in-oil microemulsion. J Appl Cryst, 2007, 40: s274–s278CrossRefGoogle Scholar
  129. 129.
    Puech N, Mora S, Testard V, Porte G, Ligoure C, Grillo I, Phou T, Oberdisse J. Structure and rheological properties of model microemulsion networks filled with nanoparticles. Eur Phys J E, 2008, 26: 13–24CrossRefGoogle Scholar
  130. 130.
    Rahman MBA, Huan QY, Tejo BA, Basri M, Salleh A, Rahman RNZA. Self-assembly formation of palm-based esters nano-emulsion: A molecular dynamics study. Chem Phys Lett, 2009, 480: 220–224CrossRefGoogle Scholar
  131. 131.
    de Dios M, Barroso F, Tojo C, Lopez-Quintela MA. Simulation of the kinetics of nanoparticle formation in microemulsions. J Colloid Interf Sci, 2009, 333: 741–748CrossRefGoogle Scholar
  132. 132.
    Mathias EV, Liu XL, Franco O, Khan I, Ba Y, Kornfield JA. Model of drug-loaded fluorocarbon-based micelles studied by electron-spin induced F-19 relaxation NMR and molecular dynamics simulation. Langmuir, 2008, 24: 692–700CrossRefGoogle Scholar
  133. 133.
    Wang YF, Larsson DSD, van der Spoel D. Encapsulation of myoglobin in a cetyl trimethylammonium bromide micelle in vacuo: A simulation study. Biochemistry, 2009, 48: 1006–1015CrossRefGoogle Scholar
  134. 134.
    Frenkel YV, Gallicchio E, Das K, Levy RM, Arnold E. Molecular dynamics study of non-nucleoside reverse transcriptase inhibitor 4-[[4-[[4-[(E)-2-Cyanoethenyl]-2,6-dimethylphenyl]amino]-2-pyrim idinyl]amino]benzonitrile (TMC278/Rilpivirine) aggregates: Correlation between amphiphilic properties of the drug and oral bioavailability. J Med Chem, 2009, 52: 5896–5905CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Key Laboratory for Nanomaterials, Ministry of EducationBeijing University of Chemical TechnologyBeijingChina
  2. 2.Laboratoire de Chimie, UMR 5182CNRS, Ecole Normale Supérieure de LyonLyon Cedex 07France

Personalised recommendations