Science China Chemistry

, Volume 53, Issue 8, pp 1669–1678 | Cite as

Recent progress in interface modification for dye-sensitized solar cells

  • BeiBei Ma
  • Rui Gao
  • LiDuo WangEmail author
  • YiFeng Zhu
  • YanTao Shi
  • Yi Geng
  • HaoPeng Dong
  • Yong Qiu


Interface modification on the TiO2/dye/electrolyte interface of dye-sensitized solar cells (DSCs) is one of the most effective approaches to suppress the charge recombination, improve electron injection and transportation, and thus ameliorate the conversion efficiency and stability of DSCs. Conventional research focusing on the photoanodes interface modification before sensitization in dye-sensitized solar cells has been carried out and reviewed. However, recent studies showed that post-modification after sensitization of the TiO2 electrode also plays a significant role on the TiO2/dye/electrolyte interface. This post-modification using the immersing method could deprotonate dye molecules, prohibit the dye aggregation and retard the recombination reaction. As a result, it has great influence on the devices’ photovoltaic performance. This interface modification could also provide an approach to broaden the response of the solar spectrum by introducing an alternative assembling structure. An in-situ meaning of using a co-adsorbent is employed to modify the interface in the DSCs, which could retard the aggregation of the dye molecules and enhance the conversion efficiency. In addition, electrolyte additives can be used to modify the TiO2/dye/electrolyte interface through some unique mechanisms. Based on the background of interface modification of photoanodes before sensitization, this review introduces various interface modifications after sensitization of dye-sensitized solar cells and their mechanisms.


dye-sensitized solar cell TiO2 electrode interface modification electron recombination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O’Regan B, Grätzel M. A low-cost, high effiency, solar cell based on dye-sensitized TiO2 film. Nature, 1991, 353: 737–739CrossRefGoogle Scholar
  2. 2.
    Barbé CJ, Arendse, F, Comte P, Jirousek, M, Lenzmann F, Shklover V, Grätzel M. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am Ceram Soc, 1997, 80(12): 3157–3171CrossRefGoogle Scholar
  3. 3.
    Nazeeruddin MK, Péchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M. Engineering of efficient panchromatic sensitizers for nanocrystalline Tio2-based solar cells. J Am Chem Soc, 2001, 123: 1613–1624CrossRefGoogle Scholar
  4. 4.
    Grätzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A: Chem, 2004, 164: 3–14CrossRefGoogle Scholar
  5. 5.
    Grätzel M. Perspectives for dye-sensitized nanocrystalline solar cells. Prog Photovolt Res Appl, 2000, 8: 171–185CrossRefGoogle Scholar
  6. 6.
    Liu DX, Zhao B, Shen P, Huang H, Liu LM, Tan ST. Molecular design of organic dyes based on vinylene hexylthiophene bridge for dye-sensitized solar cells. Sci China Ser B: Chem, 2009, 52: 1198–1209CrossRefGoogle Scholar
  7. 7.
    Wang CL, Sun L, Xie KP, Lin CJ. Controllable incorporation of CdS nanoparticles into TiO2 nanotubes for highly enhancing the photocatalytic response to visible light. Sci China, Ser B: Chem, 2009, 52: 2148–2155CrossRefGoogle Scholar
  8. 8.
    Parkinson BA, Spitler MT. Recent advances in high quantum yield dye sensitization of semiconductor electrodes. Electrochim Acta, 1992, 37(5): 943–948CrossRefGoogle Scholar
  9. 9.
    Hagfeldt A, Grätzel M. Light-induced redox reactions in nanocrystalline systems. Chem Rev, 1995, 95: 49–68CrossRefGoogle Scholar
  10. 10.
    Bonhôte P, Moser JE, Vlachopoulos N, Walder L, Zakeeruddin SM, Humphry-Baker R, Péchy P, Grätzel M. Photoinduced electron transfer and redox-type photochromism of a TiO2-anchored molecular diad. Chem Commun, 1996: 1163-1164Google Scholar
  11. 11.
    Argazzi R, Bignozzi CA. Remote interfacial electron transfer from supramolecular sensitizers. Inorg Chem, 1997, 36: 2–3CrossRefGoogle Scholar
  12. 12.
    Grätzel M. Mesoporous oxide junctions and nanostructured solar cells. Curr Opin Colloid Interface Sci, 1999, 4: 314–321CrossRefGoogle Scholar
  13. 13.
    Thavasi V, Renugopalakrishnan V, Jose R, Ramakrishna S. Controlled electron injection and transport at materials interfaces in dye sensitized solar cells. Mater Sci Eng R, 2009, 63: 81–99CrossRefGoogle Scholar
  14. 14.
    Bandaranayake KMP, Senevirathna MKI, Weligamuwa PMGMP, Tennakone K. Dye-sensitized solar cells made from nanocrystalline TiO2 films coated with outer layers of different oxide materials. Coord Chem Rev, 2004, 248: 1277–1281CrossRefGoogle Scholar
  15. 15.
    Nazeeruddin MK, Rodicio AKI, Humpbry-Baker R, Liska E, Müller P, Vlachopoulos N, Grätzel M. Conversion of light to electricity by cis-xzbis (2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X=C1, Br, I, CN, and SCN) on nanocrystalline TiO2 electrodes. J Am Chem Soc, 1993,115: 6382–6390CrossRefGoogle Scholar
  16. 16.
    Frank AJ, Kopidakis N, van de Lagemaat J. Electrons in nanostructured TiO2 solar cells: Transport, recombination and photovoltaic properties. Coord Chem Rev, 2004, 248: 1165–1179CrossRefGoogle Scholar
  17. 17.
    Frank AJ, van de Lagemaat J. Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: Transient photocurrent and random-walk modeling studies. J Phys Chem B, 2001, 105: 11194–11205CrossRefGoogle Scholar
  18. 18.
    Hagfeldt A, Lindquistb SE, Grätzel M. Charge carrier separation and charge transport in nanocrystalline junctions. Sol Energy Mater Sol Cells, 1994, 32(3): 245–257CrossRefGoogle Scholar
  19. 19.
    Kavan L, Grätzel M, Gilbert SE, Klemenz C, Scheel HJ. Electrochemical and photoelectrochemical investigation of single-crystal anatase. J Am Chem Soc, 1996, 118: 6716–6723CrossRefGoogle Scholar
  20. 20.
    Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F, Modelling the electric potential distribution in the dark in nanoporous semiconductor electrodes. J Solid State Chem, 1999, 3:337–347Google Scholar
  21. 21.
    Tachibana Y, Moser JE, Grätzel M, Klug DR, Durrant JR. Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films. J Phys Chem, 1996, 100: 20056–20062CrossRefGoogle Scholar
  22. 22.
    Palomares E, Clifford JN, Haque SA, Lutz T, Durrant JR. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. J Am Chem Soc, 2003, 125: 475–482CrossRefGoogle Scholar
  23. 23.
    Diamant Y, Chen SG, Melamed O, Zaban A. Core-shell nanoporous electrode for dye sensitized solar cells: The effect of the SrTiO3 shell on the electronic properties of the TiO2 core. J Phys Chem B, 2003, 107: 1977–1981CrossRefGoogle Scholar
  24. 24.
    Nasr C, Kamat PV, Hotchandani S. Photoelectrochemistry of composite semiconductor thin films. Photosensitization of the SnO2/TiO2 coupled system with a ruthenium polypyridyl complex. J Phys Chem B, 1998, 102: 10047–10056CrossRefGoogle Scholar
  25. 25.
    Santz PA, Kamat PV. Interparticle electron transfer between size-quantized CdS and TiO2 semiconductor nanoclusters. Phys Chem Chem Phys, 2002, 4: 198–203Google Scholar
  26. 26.
    Bedja I, Kamat PV. Capped semiconductor colloids. Synthesis and photoelectrochemical behavior of TiO2-capped SnO2 nanocrystallites. J Phys Chem, 1995, 99: 9182–9188CrossRefGoogle Scholar
  27. 27.
    Chen SG, Chappel S, Diamant Y, Zaban A. Preparation of Nb2O5 coated TiO2 nanoporous electrodes and their application in dye-sensitized solar cells. Chem Mater, 2001, 13: 4629–4634CrossRefGoogle Scholar
  28. 28.
    Tada H, Hattori A, Tokihisa Y, Imai K, Tohge, N, Ito S. A patterned-TiO2/SnO2 bilayer type photocatalyst. J Phys Chem B, 2000, 104: 4585–4587CrossRefGoogle Scholar
  29. 29.
    Zaban A, Chen SG, Chappela S, Gregg BA. Bilayer nanoporous electrodes for dye sensitized solar cells. Chem Commun, 2000: 2231–2232Google Scholar
  30. 30.
    Kay A, Grätzel M. Dye-sensitized core-shell nanocrystals: Improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chem Mater, 2002, 14: 2930–2935CrossRefGoogle Scholar
  31. 31.
    Kumara GRRA, Tennakone K, Perera VPS, Konno A, Kaneko S, Okuya M. Suppression of recombinations in a dye-sensitized photoelectrochemical cell made from a film of tin IV oxide crystallites coated with a thin layer of aluminium oxide. J Phys D: Appl Phys, 2001, 34: 868–873CrossRefGoogle Scholar
  32. 32.
    Tennakone K, Perera VPS, Kottegoda IRM, De Silva LAA, Kumara GRRA, Konno A. Dye-sensitized solid-state photovoltaic cells: Suppression of electron-hole recombination by deposition of the dye on a thin insulating film in contact with a semiconductor. J Electron Mater, 2001, 30: 992–996CrossRefGoogle Scholar
  33. 33.
    Gregg BA, Pichot F, Ferrere S, Fields CL. Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces. J Phys Chem B, 2001, 105: 1422–1429CrossRefGoogle Scholar
  34. 34.
    Diamant Y, Chappel S, Chen SG, Melamed O, Zaban A. Core-shell nanoporous electrode for dye sensitized solar cells: The effect of shell characteristics on the electronic properties of the electrode. Coord Chem Rev, 2004, 248: 1271–1276CrossRefGoogle Scholar
  35. 35.
    Sayama K, Sugihara H, Arakawa H. Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye. Chem Mater, 1998, 10: 3825–3832CrossRefGoogle Scholar
  36. 36.
    Wang P, Wang LD, Li B, Qiu Y. Improved voltage and fill factor by using zin oxide thin film as a barrier layer in dye-sensitized solar cells. Chin Phys Lett, 2005, 22: 2708–2710CrossRefGoogle Scholar
  37. 37.
    Kim SS, Yum JH, Sung YE. Flexible dye-sensitized solar cells using ZnO coated TiO2 nanoparticles. J Photochem Photobiol A: Chem, 2005, 171: 269–273CrossRefGoogle Scholar
  38. 38.
    Jung HS, Lee JK, Nastasi M, Lee SW, Kim JY, Park JS, Hong KS, Shin, H. Preparation of nanoporous MgO-coated TiO2 nanoparticles and their application to the electrode of dye-sensitized solar cells. Langmuir, 2005, 21: 10332–10335CrossRefGoogle Scholar
  39. 39.
    O’Regan BC, Scully S, Mayer AC, Palomares E, Durrant J. The effect of Al2O3 barrier layers in TiO2/dye/CuSCN photovoltaic cells explored by recombination and DOS characterization using transient photovoltage measurements. J Phys Chem B, 2005, 109: 4616–4623CrossRefGoogle Scholar
  40. 40.
    Palomares E, Clifford JN, Haque SA, Lutz T, Durrant JR. Slow charge recombination in dye-sensitized solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films. Chem Commun, 2002: 1464-1465Google Scholar
  41. 41.
    Menzies DB, Bourgeois L, Cheng YB, Simon GP, Brack N, Spiccia L. Characterization of nanostructured core-shell working electrodes for application in dye-sensitized solar cells. Surf Coat Technol, 2005, 198: 118–122CrossRefGoogle Scholar
  42. 42.
    Lee S, Kim JY, Hong KS, Jung HS, Lee JK, Shin H. Enhancement of the photoelectric performance of dye-sensitized solar cells by using a CaCO3-coated TiO2 nanoparticle film as an electrode. Sol Energy Mater Sol Cells, 2006, 90: 2405–2412CrossRefGoogle Scholar
  43. 43.
    Zaban A, Chen SG, Sukenik CN, Pizem H. Molecular modification of the electronic properties of nanoporous TiO2 electrodes. Abstr Paper Am Chem Soc, 2001, 222: U236–U236Google Scholar
  44. 44.
    Wu XM, Wang LD, Luo F, Ma BB, Zhan C, Qiu Y. BaCO3 modification of TiO2 electrodes in quasi-solid-state dye-sensitized solar cells: Performance improvement and possible mechanism. J Phys Chem C, 2007, 111: 8075–8079CrossRefGoogle Scholar
  45. 45.
    Kroeze JE, Savenije TJ, Warman JM. Electrodeless determination of the trap density, decay kinetics, and charge separation efficiency of dye-sensitized nanocrystalline TiO2. J Am Chem Soc, 2004, 126: 7608–7618CrossRefGoogle Scholar
  46. 46.
    Haque SA, Tachibana Y, Willis RL, Mose, JE, Grätzel M, Klug DR, Durrant JR. Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films. J Phys Chem B, 2000, 104: 538–547CrossRefGoogle Scholar
  47. 47.
    Nelson J, Haque SA, Klug DR, Durrant JR. Trap-limited recombination in dye-sensitized nanocrystalline metal oxide electrodes. Phys Rev B, 2001, 63: 205321-1–205321-9CrossRefGoogle Scholar
  48. 48.
    Park NG, Schlichthörl G, van de Lagemaat J, Cheong HM, Mascarenhas A, Frank AJ. Dye-sensitized TiO2 solar cells: Structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4. J Phys Chem B, 1999, 103: 3308–3314CrossRefGoogle Scholar
  49. 49.
    Tennakone K, Kumara GRRA, Kottegoda IRM, Perera VPS. An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chem Commun, 1999: 15-16Google Scholar
  50. 50.
    Wang P, Wang LD, Ma BB, Li B, Qiu Y. TiO2 surface modification and characterization with nanosized pbs in dye-sensitized solar cells. J Phys Chem B, 2006, 110: 14406–14409CrossRefGoogle Scholar
  51. 51.
    Ma BB, Luo F, Wang LD, Wu XM, Zhan C, Qiu Y. Structure and morphology of nanosized PbS on TiO2 nanoporous film in dye-sensitized solar cells. Jpn J App Phys, 2007, 46(12): 7745–7748CrossRefGoogle Scholar
  52. 52.
    Ramakrishna G, Singh AK, Palit DK, Ghosh HN. Slow back electron transfer in surface-modified TiO2 nanoparticles sensitized by alizarin. J Phys Chem B, 2004, 108: 1701–1707CrossRefGoogle Scholar
  53. 53.
    van de Lagemaat J, Park NG, Frank AJ. Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: A study by electrical impedance and optical modulation techniques. J Phys Chem B, 2000, 104: 2044–2052CrossRefGoogle Scholar
  54. 54.
    Kopidakis N, Schiff EA, Park NG, van de Lagemaat J, Frank AJ. Ambipolar diffusion of photocarriers in electrolyte-filled, nanoporous TiO2. J Phys Chem B, 2000, 104: 3930–3936CrossRefGoogle Scholar
  55. 55.
    Grätzel M. Mesoscopic solar cells for electricity and hydrogen production from sunlight. Chem Lett, 2005, 34(1): 8–13CrossRefGoogle Scholar
  56. 56.
    Schlichthörl G, Park NG, Frank AJ. Evaluation of the charge-collection efficiency of dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B, 1999, 103: 782–791CrossRefGoogle Scholar
  57. 57.
    Lindström H, Rensmo H, Södergren S, Solbrand A, Lindquist SE. Electron transport properties in dye-sensitized nanoporous-nanocrystalline TiO2 films. J Phys Chem, 1996, 100: 3084–3088CrossRefGoogle Scholar
  58. 58.
    Zeng LY, Dai SY, Wang KJ, Pan X, Shi CW, Guo L. Mechanims of enhanced performance of dye-sensitized solar cell based TiO2 films treated by titanium tetrachloride. Chin Phys Lett, 2004, 21(9): 1835–1837CrossRefGoogle Scholar
  59. 59.
    Ito S, Liska P, Comte P, Charvet R, Péchy P, Bach U, Schmidt-Mende L, Zakeeruddin SM, Kay A, Nazeeruddin MK, Grätzel M. Control of dark current in photoelectrochemical (TiO2/I-I3) and dye-sensitized solar cells. Chem Comm, 2005: 4351-4353Google Scholar
  60. 60.
    Sommeling PM, O’Regan BC, Haswell RR, Smit HJP, Bakker NJ, Smits JJT, Kroon JM, van Roosmalen JAM. Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. J Phys Chem B, 2006, 110: 19191–19197CrossRefGoogle Scholar
  61. 61.
    Wang ZS, Yanagida M, Sayama K, Sugihara H. Electronic-Insulating coating of CaCO3 on TiO2 electrode in dye-sensitized solar cells: Improvement of electron lifetime and efficiency. Chem Mater, 2006, 18: 2912–2916CrossRefGoogle Scholar
  62. 62.
    Nilsing M, Lunell S, Persson P, Ojamäe L. Phosphonic acid adsorption at the TiO2 anatase (101) surface investigated by periodic hybrid HF-DFT computations. Surf Sci, 2005, 582: 49–60CrossRefGoogle Scholar
  63. 63.
    Shklover V, Ovchinnikov Yu E, Braginsky LS, Zakeeruddin SM, Grätzel M. Structure of organic/inorganic interface in assembled materials comprising molecular components. crystal structure of the sensitizer bis[(4,4′-carboxy-2,2-bipyridine)(thiocyanato)]ruthenium(II). Chem Mater, 1998, 10: 2533–2541CrossRefGoogle Scholar
  64. 64.
    Wenger B, Grätzel M, Moser JE. Rationale for kinetic heterogeneity of ultrafast light-induced electron transfer from Ru(II) complex sensitizers to nanocrystalline TiO2. J Am Chem Soc, 2005, 127: 12150–12151CrossRefGoogle Scholar
  65. 65.
    Fillinger A, Soltz D, Parkinson BA. Dye sensitization of natural anatase crystals with a ruthenium-based dye. J Electrochem Soc, 2002, 149(9): A1146–A1156CrossRefGoogle Scholar
  66. 66.
    Ushiroda S, Ruzycki N, Lu Y, Spitler MT, Parkinson BA. Dye sensitization of the anatase (101) crystal surface by a series of dicarboxylated thiacyanine dyes. J Am Chem Soc, 2005, 127: 5158–5168CrossRefGoogle Scholar
  67. 67.
    Luo F, Wang LD, Ma BB, Qiu Y. Post-modification using aluminum isopropoxide after dye-sensitization for improved performance and stability of quasi-solid-state solar cells. J Photochem Photobiol A: Chem, 2008, 197: 375–381CrossRefGoogle Scholar
  68. 68.
    Gao R, Wang LD, Ma BB, Zhan C, Qiu Y. Mg(OOCCH3)2 interface modification after sensitization to improve performance in quasi-solid dye-sensitized solar cells. Langmuir, 2010, 26(4): 2460–2465CrossRefGoogle Scholar
  69. 69.
    Ma BB, Gao R, Wang LD, Luo F, Zhan C, Li JL, Qiu Y. Alternating assembly structure of the same dye and modification material in quasi-solid state dye-sensitized solar cell. J Photochem Photobiol A: Chem., 2009, 202: 33–38CrossRefGoogle Scholar
  70. 70.
    Clifford JN, Palomares E, Nazeeruddin Md K, Thampi R, Grätzel M, Durrant JR. Multistep electron transfer processes on dye co-sensitized nanocrystalline TiO2 films. J Am Chem Soc, 2004, 126: 5670–5671CrossRefGoogle Scholar
  71. 71.
    Choi H, Kim S, Kang SO, Ko J, Kang MS, Clifford JN, Forneli A, Palomares E, Nazeeruddin MK, Grätzel M. Stepwise cosensitization of nanocrystalline tio2 films utilizing Al2O3 layers in dye-sensitized solar cells. Angew Chem Int Ed, 2008, 47: 8259–8263CrossRefGoogle Scholar
  72. 72 (a).
    Kim S, Lee JK, Kang SO, Ko J, Yum JH, Fantacci S, De Angelis F, Censo DD, Nazeeruddin MK, Grätzel M. Molecular engineering of organic sensitizers for solar cell applications. J Am Chem Soc, 2006, 128: 16701–16707CrossRefGoogle Scholar
  73. 72 (b).
    Yum JH, Walter P, Huber S, Rentsch D, Geiger T, Nüesch F, De Angelis F, Grätzel M, Nazeeruddin MK. Efficient far red sensitization of nanocrystalline TiO2 films by an unsymmetrical squaraine dye. J Am Chem Soc, 2007, 129: 10320–10321CrossRefGoogle Scholar
  74. 73.
    Wang XF, Kitao O, Zhou HS, Tamiaki H, Sasaki S. Efficient dye-sensitized solar cell based on oxo-bacteriochlorin sensitizers with broadband absorption capability. J Phys Chem C, 2009, 113: 7954–7961CrossRefGoogle Scholar
  75. 74.
    Li X, Lin H, Zakeeruddin SM, Grätzel M, Li JB. Interface modification of dye-sensitized solar cells with pivalic acidto enhance the open-circuit voltage. Chem Lett, 2009, 38: 322–323CrossRefGoogle Scholar
  76. 75.
    Boschloo G, Häggman L, Hagfeldt A. Quantification of the effect of 4-tert-butylpyridine addition to I/I3 redox electrolytes in dye-sensitized nanostructured TiO2 solar cells. J Phys Chem B, 2006, 110: 13144–13150CrossRefGoogle Scholar
  77. 76.
    Stathatos E, Lianos P, Zakeeruddin SM, Liska P, Grätzel M. A quasi-solid-state dye-sensitized solar cell based on a sol-gel nanocomposite electrolyte containing ionic liquid. Chem Mater, 2003, 15: 1825–1829CrossRefGoogle Scholar
  78. 77.
    Kusama H, Arakawa H. Influence of aminotriazole additives in electrolytic solution on dye-sensitized solar cell performance. J Photochem Photobiol A: Chem, 2004, 164: 103–110CrossRefGoogle Scholar
  79. 78.
    Boschloo G, Lindström H, Magnusson E, Holmberg A, Hagfeldt A. Optimization of dye-sensitized solar cells prepared by compression method. J Photochem Photobiol A: Chem., 2002, 148: 11–15CrossRefGoogle Scholar
  80. 79.
    Boschloo G, Hagfeldt A. Photoinduced absorption spectroscopy of dye-sensitized nanostructured TiO2. Chem Phys Lett, 2003, 370: 381–386CrossRefGoogle Scholar
  81. 80.
    Wang P, Zakeeruddin SM, Exnarb I, Grätzel M. High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem Commun, 2002: 2972-2973Google Scholar
  82. 81.
    Kato T, Fujimoto M, Kado T, Sakaguchi S, Kosugi D, Shiratuchi R, Takashima W, Kaneto K, Hayase S. Additives for increased photoenergy conversion efficiencies of quasi-solid, dye-sensitized solar cells. J Electrochem Soc, 2005, 152(6): A1105–A1108CrossRefGoogle Scholar
  83. 82.
    Zhu YF, Wang LD, Shi YT, Gao R, Qiu Y. Effect of Mg(OOCCH3)2 as additives in the electrolytes on the photovoltaic performance of DSCs[C]. The 6th National Symposium on Organic Molecule and Polymer Light. Emitting and Laser. Shanghai, China, Nov. 2009. 15–18Google Scholar
  84. 83.
    Krüger J, Plass R, Cevey L, Piccirelli M, Grätzel M, Bach U. High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Appl Phys Lett, 2001, 79(13): 2085–2087CrossRefGoogle Scholar
  85. 84.
    Snaith HJ, Moule AJ, Klein C, Meerholz K, Friend RH, Grätzel M. Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture. Nano Lett, 2007, 7(11): 3372–3376CrossRefGoogle Scholar
  86. 85.
    Shi YT, Zhan C, Wang LD, Ma BB, Gao R, Zhu YF, Qiu Y. The electrically conductive function of high-molecular weight poly(eth-ylene oxide) in polymer gel electrolytes used for dye-sensitized solar cells. Phys Chem Chem Phys, 2009, 11: 4230–4235CrossRefGoogle Scholar
  87. 86.
    Redmond G, Fitzmaurice D. Spectroscopic determination of flatband potentials for polycrystalline TiO2 electrodes in nonaqueous solvents. J Phys Chem, 1993, 97: 1426–1430CrossRefGoogle Scholar
  88. 87.
    Lindström H, Södergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist SE. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J Phys Chem B, 1997, 101: 7717–7722CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • BeiBei Ma
    • 1
  • Rui Gao
    • 1
  • LiDuo Wang
    • 1
    Email author
  • YiFeng Zhu
    • 1
  • YanTao Shi
    • 1
  • Yi Geng
    • 1
  • HaoPeng Dong
    • 1
  • Yong Qiu
    • 1
  1. 1.Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education; Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations