Science China Chemistry

, Volume 53, Issue 7, pp 1571–1577 | Cite as

Selective hydrogenation of citral over Au-based bimetallic catalysts in supercritical carbon dioxide

  • RuiXia Liu
  • FengYu Zhao


Selective hydrogenation of citral was investigated over Au-based bimetallic catalysts in the environmentally benign supercritical carbon dioxide (scCO2) medium. The catalytic performances were different in citral hydrogenation when Pd or Ru was mixed (physically and chemically) with Au. Compared with the corresponding monometallic catalyst, the total conversion and the selectivity to citronellal (CAL) were significantly enhanced over TiO2 supported Pd and Au bimetallic catalysts (physically and chemically mixed); however, the conversion and selectivity did not change when Ru was physically mixed with Au catalyst compared to the monometallic Ru/TiO2, and the chemically mixed Ru-Au/TiO2 catalyst did not show any activity. The effect of CO2 pressure on the conversion of citral and product selectivity was significantly different over the Au/TiO2, Pd-Au/TiO2, and Pd/TiO2 catalysts. It was assumed to be ascribed to the difference in the interactions between Au, Pd nanoparticles and CO2 under different CO2 pressures.


supercritical CO2 citral hydrogenation bimetallic catalysts synergistic effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leitner W. Supercritical carbon dioxide as a green reaction medium for catalysis. Acc Chem Res, 2002, 35: 746–756CrossRefGoogle Scholar
  2. 2.
    Jessop PG, Ikariya T, Noyori R. Homogeneous catalysis in supercritical fluids. Chem Rev, 1999, 99: 475–493CrossRefGoogle Scholar
  3. 3.
    Baiker A. Supercritical fluids in heterogeneous catalysis. Chem Rev, 1999, 99: 453–473CrossRefGoogle Scholar
  4. 4.
    Zhao F, Fujita S, Akihara S, Arai M. Hydrogenation of benzaldehyde and cinnamaldehyde in compressed CO2 medium with a Pt/C catalyst: A study on molecular interactions and pressure effects. J Phys Chem A, 2005, 109: 4419–4424CrossRefGoogle Scholar
  5. 5.
    Nelson MR, Brokman RF. Ab initio calculations on CO2 binding to carbonyl groups. J Phys Chem A, 1998, 102: 7860–7863CrossRefGoogle Scholar
  6. 6.
    Raveendran P, Wallen SL. Cooperative C…H…O hydrogen bonding in CO2 Lewis Base complexes: Implications for solvation in supercritical CO2. J Am Chem Soc, 2002, 124: 12590–2599CrossRefGoogle Scholar
  7. 7.
    Milone C, Ingoglia R, Pistone A, Neri G, Frusteri F, Galvagno S. Selective hydrogenation of α,β-unsaturated ketones to α,β-unsaturated alcohols on gold-supported catalysts. J Catal, 2004, 222: 348–356CrossRefGoogle Scholar
  8. 8.
    Mohr C, Hofmeister H, Radnik J, Claus P. Identification of active sites in gold-catalyzed hydrogenation of acrolein. J Am Chem Soc, 2003, 125: 1905–1911CrossRefGoogle Scholar
  9. 9.
    Okumura M, Akita T, Haruta M. Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts. Catal Today, 2002, 74: 265–269CrossRefGoogle Scholar
  10. 10.
    Pawelec B, Venezia AM, La Parola V, Cano-Serrano E, Campos-Martin JM, Fierro JLG. AuPd alloy formation in Au-Pd/Al2O3 catalysts and its role on aromatics hydrogenation. Appl Surf Sci, 2005, 242: 380–391CrossRefGoogle Scholar
  11. 11.
    Li XL, Li BZ, Cheng MH, Du YK, Wang XM, Yang P. Catalytic hydrogenation of phenyl aldehydes using bimetallic Pt/Pd and Pt/Au nanoparticles stabilized by cubic silsesquioxanes. J Mol Catal A, 2008, 284: 1–7CrossRefGoogle Scholar
  12. 12.
    Pawelec B, Venezia AM, La Parola V, Thomas S, Fierro JLG. Factors influencing selectivity in naphthalene hydrogenation over Auand Pt-Au-supported catalysts. Appl Catal A, 2005, 283: 165–175CrossRefGoogle Scholar
  13. 13.
    Claus P. Heterogeneously catalyzed hydrogenation using gold catalysts. Appl Catal A, 2005, 291: 222–229CrossRefGoogle Scholar
  14. 14.
    Hammer B, Norskov JK. Why gold is the noblest of all the metals. Nature, 1995, 376: 238–240CrossRefGoogle Scholar
  15. 15.
    Zanella R, Louis C, Giorgio S, Touroude R. Crotonaldehyde hydrogenation by gold supported on TiO2: Structure sensitivity and mechanism. J Catal, 2004, 223: 328–339CrossRefGoogle Scholar
  16. 16.
    Liu F, Wechsler D, Zhang P. Alloy-structure-dependent electronic behavior and surface properties of Au-Pd nanoparticles. Chem Phys Lett, 2008, 461: 254–259CrossRefGoogle Scholar
  17. 17.
    Cardenas-Lizana F, Gomez-Quero S, Keane M. Gas phase hydrogenation of m-dinitrobenzene over alumina supported Au and Au-Ni alloy. Catal Lett, 2009, 127: 25–32CrossRefGoogle Scholar
  18. 18.
    Pawelec B, Cano-Serrano E, Campos-Martin JM, Navarro RM, Thomas S, Fierro JLG. Deep aromatics hydrogenation in the presence of DBT over Au-Pd/gamma-alumina catalysts. Appl Catal A, 2004, 275: 127–139CrossRefGoogle Scholar
  19. 19.
    Venezia AM, La Parola V, Pawelec B, Fierro JLG. Hydrogenation of aromatics over Au-Pd/SiO2-Al2O3 catalysts; Support acidity effect. Appl Catal A, 2004, 264: 43–51CrossRefGoogle Scholar
  20. 20.
    Sarkany A, Geszti O, Safran G. Preparation of Pd-shell-Au-core/SiO2 catalyst and catalytic activity for acetylene hydrogenation. Appl Catal 0A, 2008, 350: 157–163CrossRefGoogle Scholar
  21. 21.
    Sarkany A, Hargittai P, Horvath A. Controlled synthesis of PDDA stabilized Au-Pd bimetallic nanostructures and their activity in hydrogenation of acetylene. Top Catal, 2007, 46: 121–128CrossRefGoogle Scholar
  22. 22.
    Malinowski A. Hydrodechlorination of dichlorodifluoromethane (CFC-12) on silica-supported palladium and palladium-gold catalysts. Pol J Chem, 2002, 76: 1461–1466Google Scholar
  23. 23.
    Bonarowska M, Pielaszek J, Semikolenov VA, Karpinski Z. Pd-Au/Sibunit carbon catalysts: Characterization and catalytic activity in hydrodechlorination of dichlorodifluoromethane (CFC-12). J Catal, 2002, 209: 528–538CrossRefGoogle Scholar
  24. 24.
    Nutt MO, Heck KN, Alvarez P, Wong MS. Improved Pd-on-Au bimetallic nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination. Appl Catal B, 2006, 69: 115–125CrossRefGoogle Scholar
  25. 25.
    Venezia AM, La Parola V, Deganello G, Pawelec B, Fierro JLG. Synergetic effect of gold in Au/Pd catalysts during hydrodesulfurization reactions of model compounds. J Catal, 2003, 215: 317–325CrossRefGoogle Scholar
  26. 26.
    Sarkany A, Horvath A, Beck A. Hydrogenation of acetylene over low loaded Pd and Pd-Au/SiO2 catalysts. Appl Catal A, 2002, 229: 117–125CrossRefGoogle Scholar
  27. 27.
    Liu R, Yu Y, Yoshida K, Li G, Jiang H, Zhang M, Zhao F, Fujita S, Arai M. Physically and chemically mixed TiO2-supported Pd and Au catalysts: unexpected synergistic effects on selective hydrogenation of citral in supercritical CO2. J Catal, 2010, 269: 191–200CrossRefGoogle Scholar
  28. 28.
    Hao J, Xi C, Cheng H, Liu R, Cai S, Arai M, Zhao F. Influence of compressed carbon dioxide on hydrogenation reactions in cyclohexane with a Pd/C catalyst. Ind Eng Chem Res, 2008, 47: 6796–6800CrossRefGoogle Scholar
  29. 29.
    Schwank J. Gold in bimetallic catalysts. Gold Bull, 1985, 18: 2–10Google Scholar
  30. 30.
    Milone C, Tropeano ML, Gulino G, Neri G, Ingoglia R, Galvagno S. Selective liquid phase hydrogenation of citral on Au/Fe2O3 catalysts. Chem Commun, 2002, 868–869Google Scholar
  31. 31.
    Liu R, Zhao F, Fujita S, Arai M. Selective hydrogenation of citral with transition metal complexes in supercritical carbon dioxide. Appl Catal A, 2007, 316: 127–133CrossRefGoogle Scholar
  32. 32.
    Liu R, Wu C, Wang Q, Ming J, Hao Y, Yu Y, Zhao F. Selective hydrogenation of citral catalyzed with palladium nanoparticles in CO2-in-water emulsion. Green Chem, 2009, 11: 979–985CrossRefGoogle Scholar
  33. 33.
    Zhao F, Ikushima Y, Shirai M, Ebina T, Arai M. Influence of electronic state and dispersion of supported platinum particles on the conversion and selectivity of selective hydrogenation of α,β-unsaturated aldehyde in supercritical carbon dioxide. J Mol Catal A, 2002, 180: 259–265CrossRefGoogle Scholar
  34. 34.
    Arai M, Nishiyama Y, Ikushima Y. Optical absorption of fine gold particles in supercritical carbon dioxide for the characterization of solvent properties. J Supercrit Fluid, 1998, 13: 149–153CrossRefGoogle Scholar
  35. 35.
    Bhanage BM, Ikushima Y, Shirai M, Arai M. The selective formation of unsaturated alcohols by hydrogenation of α,β-unsaturated aldehydes in supercritical carbon dioxide using unpromoted Pt/Al2O3 catalyst. Catal Lett, 1999, 62: 175–177CrossRefGoogle Scholar
  36. 36.
    Zhao F, Ikushima Y, Shirai M, Ebina T, Arai M. Influence of electronic state and dispersion of supported platinum particles on the conversion and selectivity of selective hydrogenation of α,β-unsaturated aldehyde in supercritical carbon dioxide. J Mol Catal A, 2002, 180: 259–265CrossRefGoogle Scholar
  37. 37.
    Meric P, Yu KMK, Kong ATS, Tsang SC. Pressure-dependent product distribution of citral hydrogenation over micelle-hosted Pd and Ru nanoparticles in supercritical carbon dioxide. J Catal, 2006, 237: 330–336CrossRefGoogle Scholar
  38. 38.
    Poliakoff M, Howdle S. Supercritical chemistry: Synthesis with a spanner. Chem Ber, 1995, 31: 118–121Google Scholar
  39. 39.
    Hiyoshi NV. Rode C, Sato O, Tetsuka H, Shirai M. Stereoselective hydrogenation of tert-butylphenols over charcoal-supported rhodium catalyst in supercritical carbon dioxide solvent. J Catal, 2007, 252: 57–68CrossRefGoogle Scholar
  40. 40.
    Hiyoshi N, Inoue TV. Rode C, Sato O, Shirai M. Tuning cis-decalin selectivity in naphthalene hydrogenation over carbon-supported rhodium catalyst under supercritical carbon dioxide. Catal Lett, 2006, 106: 133–138CrossRefGoogle Scholar
  41. 41.
    Hiyoshi N, Mine EV, Rode C, Sato O, Shirai M. Stereoselective hydrogenation of tetralin to cis-decalin over a carbon-supported rhodium catalyst in supercritical carbon dioxide solvent. Chem Lett, 2006, 35: 188–189CrossRefGoogle Scholar
  42. 42.
    Hiyoshi N, Mine EV, Rode C, Sato O, Shirai M. Low temperature hydrogenation of tetralin over supported rhodium catalysts in supercritical carbon dioxide solvent. Appl Catal A, 2006, 310: 194–198CrossRefGoogle Scholar
  43. 43.
    Chatterjee M, Kawanami H, Sato M, Chatterjee A, Yokoyama T, Suzuki T. Hydrogenation of phenol in supercritical carbon dioxide catalyzed by palladium supported on Al-MCM-41: A facile route for one-pot cyclohexanone formation. Adv Synth Catal, 2009, 351: 1912–1924CrossRefGoogle Scholar
  44. 44.
    Ichikawa S, Tada M, Iwasawab Y, Ikariya T. The role of carbon dioxide in chemoselective hydrogenation of halonitroaromatics over supported noble metal catalysts in supercritical carbon dioxide. Chem Commun, 2005, 924–926Google Scholar
  45. 45.
    Liu H, Jiang T, Han B, Liang S, Zhou Y. Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst. Science, 2009, 326: 1250–1252CrossRefGoogle Scholar
  46. 46.
    Augustine RL. Dekker Inc M, New York, 1996Google Scholar
  47. 47.
    Chatterjee M, Chatterjee A, Ikushima Y. Pd-catalyzed completely selective hydrogenation of conjugated and isolated C=C of citral (3,7-dimethyl-2,6-octadienal) in supercritical carbon dioxide. Green Chem, 2004, 6: 114–118CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.State Key Laboratory of Electroanalytical Chemistry; Laboratory of Green Chemistry and Process, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina

Personalised recommendations