Science China Chemistry

, Volume 53, Issue 6, pp 1346–1351 | Cite as

Structural studies of dicycloplatin, an antitumor supramolecule

  • XuQing Yang
  • XiangLin Jin
  • QinHua Song
  • KaLuo Tang
  • ZhenYun Yang
  • XiaoFeng Zhang
  • YouQi Tang


The solubility and stability of platinum-based anticancer agents have a direct bearing on their activity and toxicity. Much research has been conducted over the past decades in order to prepare drugs such as cisplatin and carboplatin with improved efficacy and reduced toxicity. Based on the premise that supramolecular platinum agents may have superior physicochemical properties, we successfully designed a novel anticancer agent, dicycloplatin, which has proven to be active against a number of human malignancies. The crystal structure of dicycloplatin has been determined. An aqueous solution of dicycloplatin was also studied using electrospray ionization mass spectrometry (ESI-MS). Based on the experimental observations, a model of the structure in aqueous solution is proposed which explains both the higher solubility and higher stability of dicycloplatin compared with carboplatin.


dicycloplatin crystal structure supramolecule anticancer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rosenberg B, VanCamp L, Krigas T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature, 1965, 205: 698–699CrossRefGoogle Scholar
  2. 2.
    Rosenberg B, VanCamp L, Trosko JE, Mansour VH. Platinum compounds: a new class of potent antitumour agents. Nature, 1969, 222: 385–386CrossRefGoogle Scholar
  3. 3.
    Loehrer PJ, Einhorn LH. Drugs five years later. Cisplatin. Ann Intern Med, 1984, 100: 704–713Google Scholar
  4. 4.
    Barabas K, Milner R, Lurie D, Adin C. Cisplatin: a review of toxicities and therapeutic applications. Vet Comp Oncol, 2008, 6: 1–18CrossRefGoogle Scholar
  5. 5.
    Gordon M, Hollander S. Review of platinum anticancer compounds. J Med, 1993, 24: 209–265Google Scholar
  6. 6.
    Yarbro C H. Carboplatin: a clinical review. Semin Oncol Nurs, 1989, 5: 63–69CrossRefGoogle Scholar
  7. 7.
    Giaccone G. Clinical perspectives on platinum resistance. Drugs, 2000, 59(Suppl 4): 9–17; discussion: 37–38CrossRefGoogle Scholar
  8. 8.
    Beck DJ, Brubaker RR. Effect of cis-platinum(II)diamminodichloride on wild type and deoxyribonucleic acid repair deficient mutants of Escherichia coli. J Bacteriol, 1973, 116: 1247–1252Google Scholar
  9. 9.
    Drobnik J, Urbankova M, Krekulova A. The effect of cis-dichlorodiammineplatinum( II) on Escherichia coli B. The role of fil, exr and hcr markers. Mutat Res, 1973, 17: 13–20Google Scholar
  10. 10.
    Macquet JP, Theophanides T. DNA-platinum interactions in vitro with trans- and cis-Pt(NH3)2Cl2. Bioinorg Chem, 1975, 5: 59–66CrossRefGoogle Scholar
  11. 11.
    Macquet JP, Theophanides T. DNA-platinum interactions. Characterization of solid DNA-K2[PtCl]4 complexes. Inorg Chim Acta, 1976, 18: 189–194CrossRefGoogle Scholar
  12. 12.
    Brouwer J, van de Putte P, Fichtinger-Schepman AM, Reedijk J. Base-pair substitution hotspots in GAG and GCG nucleotide sequences in Escherichia coli K-12 induced by cis-diamminedichloroplatinum(II). Proc Natl Acad Sci USA, 1981, 78: 7010–7014CrossRefGoogle Scholar
  13. 13.
    Takahara PM, Rosenzweig AC, Frederick CA, Lippard SJ. Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin. Nature, 1995, 377: 649–652CrossRefGoogle Scholar
  14. 14.
    van Garderen CJ, van Houte LP. The solution structure of a DNA duplex containing the cis-Pt(NH3)2[d(-GTG-)-N7(G),N7(G)] adduct, as determined with high-field NMR and molecular mechanics/dynamics. Eur J Biochem, 1994, 225: 1169–1179CrossRefGoogle Scholar
  15. 15.
    Huang H, Zhu L, Reid BR, Drobny GP, Hopkins PB. Solution structure of a cisplatin-induced DNA interstrand cross-link. Science, 1995, 270: 1842–1845CrossRefGoogle Scholar
  16. 16.
    Fichtinger-Schepman AM, van der Veer JL, den Hartog JH, Lohman PH, Reedijk J. Adducts of the antitumor drug cis-diamminedichloroplatinum( II) with DNA: formation, identification, and quantitation. Biochemistry, 1985, 24: 707–713CrossRefGoogle Scholar
  17. 17.
    Eastman A. Reevaluation of interaction of cis-dichloro(ethylenediamine) platinum(II) with DNA. Biochemistry, 1986, 25: 3912–3915CrossRefGoogle Scholar
  18. 18.
    Zhu ST, Mao GZ. Structure-antitumor activity relationship of platinum complexes. University Chemistry, 1990, 5: 58–60Google Scholar
  19. 19.
    Sheldrick G M. A short history of SHELX. Acta Crystallogr A, 2008, 64: 112–122CrossRefGoogle Scholar
  20. 20.
    DeLano WL. The PyMOL Molecular Graphics System (2002) De-Lano Scientific, San Carlos, CA, USA., 2002
  21. 21.
    Beagley B, Cruickshank DWJ, McAuliffe CA, Pritchard RG, Zaki AM, Beddoes RL, Cernik RJ, Mills OS. The crystal and molecular structure of cis-diammine-1,1-cyclobutanedicarboxoplatinum(II) [cis-Pt(NH3)2CBDCA]. Dynamic puckering of the cyclobutane ring. J Mol Struct, 1985, 130: 97–102CrossRefGoogle Scholar
  22. 22.
    International Tables for Crystallography. Vol. C. Dordrecht: Kluwer Academic Publishers, 1992. 700Google Scholar
  23. 23.
    Jones TA, Zou JY, Cowan SW, Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A, 1991, 47: 110–119CrossRefGoogle Scholar
  24. 24.
    Brunger AT. XPLOR Manual, version 3.1. Yale University, New Haven, CT, 1992Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • XuQing Yang
    • 1
    • 2
  • XiangLin Jin
    • 2
  • QinHua Song
    • 1
  • KaLuo Tang
    • 2
  • ZhenYun Yang
    • 1
  • XiaoFeng Zhang
    • 1
  • YouQi Tang
    • 2
  1. 1.Beijing Suo Pu Xing Da Pharmaceutical Co. Ltd.BeijingChina
  2. 2.College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations