Science China Chemistry

, Volume 53, Issue 3, pp 535–541

Gelation behavior of Antheraea pernyi silk fibroin

  • ShuQin Yan
  • ChunXia Zhao
  • XiuFang Wu
  • Qiang Zhang
  • MingZhong Li
Articles

Abstract

The sol-gel transition behavior of Antherae pernyi silk fibroin (Ap-SF) has not been systematically investigated. In this work, the influence of environmental temperature, pH, the concentration of Ap-SF, K+ and Ca2+ on the gelation time, and the structural changes of Ap-SF in sol-gel transformation were studied. The results indicated that the gelation time of the Ap-SF aqueous solution decreased with the increase of the Ap-SF concentration and environmental temperature. The sol-gel transformation of Ap-SF was much more rapid than that of Bombyx mori silk fibroin under the same conditions. The Ap-SF was sensitive to changes in the concentration of Ca2+ and K+. Upon gelation, the random coil structure of the Ap-SF was significantly transformed into the β-sheet structure.

Keywords

Antheraea pernyi silk fibroin gelation sol-gel transition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL. Silk-based biomaterials. Biomaterials, 2003, 24(3): 401–416CrossRefGoogle Scholar
  2. 2.
    Li MZ, Lu SZ, Wu ZY, Yan HJ, Mo JY, Wang LH. Study on porous silk fibroin materials. I. Fine structure of freeze dried silk fibroin. J Appl Polym Sci, 2001, 79(12): 2185–2191CrossRefGoogle Scholar
  3. 3.
    Li MZ, Wu ZY, Zhang CS, Lu SZ, Yan HJ, Huang D, Ye HL. Study on porous silk fibroin materials. II. Preparation and characteristics of spongy porous silk fibroin materials. J Appl Polym Sci, 2001, 79(12): 2192–2199CrossRefGoogle Scholar
  4. 4.
    Chiarini A, Petrini P, Bozzini S, Pra ID, Armato U. Silk fibroin/poly(carbonate)-urethane as a substrate for cell growth: in vitro interactions with human cells. Biomaterials, 2003, 24(5): 789–799CrossRefGoogle Scholar
  5. 5.
    Inouye K, Kurokawa M, Nishikawa S, Tsukada M. Use of Bombyx mori silk fibroin as a substratum for cultivation of animal cells. J Biochem Biophys Methods, 1998, 37(3): 159–164CrossRefGoogle Scholar
  6. 6.
    Min B-M, Jeong L, Nam YS, Kim J-M, Kim JY, Park WH. Formation of silk fibroin matrices with different texture and its cellular response to normal human keratinocytes. Int J Biol Macromol, 2004, 34(5): 223–230CrossRefGoogle Scholar
  7. 7.
    Sofia S, McCarthy MB, Gronowicz G, Kaplan DL. Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res, 2001, 54(1): 139–148CrossRefGoogle Scholar
  8. 8.
    Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, Kaplan DL. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials, 2002, 23(20): 4131–4141CrossRefGoogle Scholar
  9. 9.
    Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science, 1987, 238(4826): 491–497CrossRefGoogle Scholar
  10. 10.
    Minoura N, Aiba S, Higuchi M, Gotoh Y, Tsukada M, Imai Y. Attachment and growth of fibroblast cells on silk fibroin. J Biochem Biophys Res Commun, 1995, 208(2): 511–516CrossRefGoogle Scholar
  11. 11.
    Minoura N, Aiba S, Gotoh Y, Tsukada M, Imai Y. Attachment and growth of cultured fibroblast cells on silk protein matrices. J Biomed Mater Res, 1995, 29(10): 1215–1221CrossRefGoogle Scholar
  12. 12.
    Luan XY, Wang Y, Duan X, Duan QY, Li MZ, Lu SZ, Zhang HX, Zhang XG. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films. J Biomed Mater, 2006, 1(4): 181–187CrossRefGoogle Scholar
  13. 13.
    Li MZ, Tao W, Kuga S, Nishiyama Y. Controlling molecular conformation of regenerated wild silk fibroin by aqueous ethanol treatment. Polym Adv Technol, 2003, 14(10): 694–698CrossRefGoogle Scholar
  14. 14.
    Li MZ, Tao W, Lu SZ, Kuga S. Compliant film of regenerated Antheraea pernyi silk fibroin by chemical crosslinking. Int J Biol Macromol, 2003, 32(3–5): 159–163CrossRefGoogle Scholar
  15. 15.
    Tao W, Li MZ, Zhao CX. Structure and properties of regenerated Antheraea pernyi silk fibroin in aqueous solution. Int J Biol Macromol, 2007, 40(5): 472–478CrossRefGoogle Scholar
  16. 16.
    Li MZ, Tao W, Lu SZ, Zhao CX. Porous 3-D scaffolds from regenerated Antheraea pernyi silk fibroin. Polym Adv Technol, 2008, 19(3): 207–212CrossRefGoogle Scholar
  17. 17.
    Kweon HY, Park YH. Dissolution and characterization of regenerated Antheraea pernyi silk fibroin. J Appl Polym Sci, 2001, 82(3): 750–758CrossRefGoogle Scholar
  18. 18.
    Kweon HY, Park YH. Structural and conformational changes of regenerated Antheraea pernyi silk fibroin films treated with methanol solution. J Appl Polym Sci, 1999, 73(14): 2887–2894CrossRefGoogle Scholar
  19. 19.
    Kweon HY, Woo SO, Park YH. Effect of heat treatment on the structural and conformational changes of regenerated Antheraea pernyi silk fibroin films. J Appl Polym Sci, 2000, 81(9): 2271–2276CrossRefGoogle Scholar
  20. 20.
    Kweon HY, Um IC, Park YH. Thermal behavior of regenerated Antheraea pernyi silk fibroin film treated with aqueous methanol. Polymer, 2000, 41(20): 7361–7367CrossRefGoogle Scholar
  21. 21.
    Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. Adv Mater, 2009, 21(32–33): 3307–3329CrossRefGoogle Scholar
  22. 22.
    Kopecek J. Hydrogel biomaterials: a smart future? Biomaterials, 2007, 28(34): 5185–5192CrossRefGoogle Scholar
  23. 23.
    Kang GD, Nahm JH, Park JS, Moon JY, Cho CS, Yeo JH. Effects of poloxamer on the gelation of silk fibroin. Macromol Rapid Commun, 2000, 21(11): 788–791CrossRefGoogle Scholar
  24. 24.
    Kim UJ, Park J, Li C, Jin HJ, Valluzzi R, Kaplan DL. Structure and properties of silk hydrogels. Biomacromolecules, 2004, 5(3): 786–792CrossRefGoogle Scholar
  25. 25.
    Nowak AP, Breedveld V, Pakstis L, Ozbas B, Pine DJ, Pochan D, Deming TJ. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature, 2002, 417(6887): 424–428CrossRefGoogle Scholar
  26. 26.
    Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J. Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng, 2000, 2(1): 9–29CrossRefGoogle Scholar
  27. 27.
    Petka WA, Harden JL, McGrath KP, Wirtz D, Tirrell DA. Reversible hydrogels from self-assembling artificial proteins. Science, 1998, 281(5375): 389–392CrossRefGoogle Scholar
  28. 28.
    Brahms S, Brahm J. Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. J Mol Biol, 1980, 138(2): 149–178CrossRefGoogle Scholar
  29. 29.
    Gotoh Y, Tsukada, M, Minoura N. Chemical modification of the arginyl residue in silk fibroin: 2. Reaction of 1,2-cyclohexanedione in aqueous alkaline medium. Int J Biol Macromol, 1996, 19(1): 41–44CrossRefGoogle Scholar
  30. 30.
    Magoshi J, Magoshi Y, Becker MA, Kato M, Han Z, Tanaka T, Inoue S, Nakamura S. Crystallization of silk fibroin from solution. Thermochimica Acta, 2000, 352–353: 165–169CrossRefGoogle Scholar
  31. 31.
    Ayub ZH, Arai M, Hirabayashi K. Quantitative structural analysis and physical properties of silk fibroin hydrogels. Polymer, 1994, 35(10): 2197–2200CrossRefGoogle Scholar
  32. 32.
    Vollrath F, Knight DP, Hu XW. Silk production in a spider involves acid bath treatment. Proc R Soc London, Ser B, 1998; 265(1398): 817–820CrossRefGoogle Scholar
  33. 33.
    Ochi A, Hossain KS, Magoshi J, Nemoto N. rheology and dynamic light scattering of silk fibroin solution extracted from the middle division of Bombyx mori silkworm. Biomacromolecules, 2002, 3(6): 1187–1196CrossRefGoogle Scholar
  34. 34.
    Ha SW, Park YH, Hudson SM. Dissolution of Bombyx mori silk fibroin in the calcium nitrate tetrahydrate—methanol system and aspects of wet spinning of fibroin solution. Biomacromolecules, 2003, 4(3): 488–496CrossRefGoogle Scholar
  35. 35.
    Ajisawa AJ. Dissolution of silk fibroin with calcium chloride/ethanol aqueous solution. Seric Sci Jpn, 1998, 67(2): 91–94Google Scholar
  36. 36.
    Jin HJ, Kaplan DL. Mechanism of silk processing in insects and spiders. Nature, 2003, 424(6952): 1057–1061CrossRefGoogle Scholar
  37. 37.
    Matsumoto A, Chen J, Collette AL, Kim UJ, Altman GH, Cebe P, Kaplan DL. mechanisms of silk fibroin sol—gel transitions. J Phys Chem B, 2006, 110(43): 21630–21638CrossRefGoogle Scholar
  38. 38.
    Sezutsu H, Yukuhiro K. Dynamic rearrangement within the Antheraea pernyi silk fibroin gene is associated with four types of repetitive units. J Mol Evol, 2000, 51(4): 329–338Google Scholar
  39. 39.
    Zhou CZ, Confalonieri F, Jacquet M, Perasso R, Li ZG, Janin J. Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins Struct Funct Gen, 2001, 44(2): 119–122CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • ShuQin Yan
    • 1
  • ChunXia Zhao
    • 1
  • XiuFang Wu
    • 1
  • Qiang Zhang
    • 1
  • MingZhong Li
    • 1
  1. 1.National Engineering Laboratory for Modern Silk; College of Textile and Clothing EngineeringSoochow UniversitySuzhouChina

Personalised recommendations