Science China Chemistry

, Volume 53, Issue 2, pp 402–410 | Cite as

First-principles calculation of core-level binding energy shift in surface chemical processes

Articles

Abstract

Combined with third generation synchrotron radiation light sources, X-ray photoelectron spectroscopy (XPS) with higher energy resolution, brilliance, enhanced surface sensitivity and photoemission cross section in real time found extensive applications in solid-gas interface chemistry. This paper reports the calculation of the core-level binding energy shifts (CLS) using the first-principles density functional theory. The interplay between the CLS calculations and XPS measurements to uncover the structures, adsorption sites and chemical reactions in complex surface chemical processes are highlight. Its application on clean low index (111) and vicinal transition metal surfaces, molecular adsorption in terms of sites and configuration, and reaction kinetics are domonstrated.

Keywords

first principles core-level binding energy shift surface chemical processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spanjaard D, Guillot C, Desjonqueres MC, Treglia G, Lecante J. Surface core level spectroscopy of transition metals: A new tool for the determination of their surface structure. Surf Sci Rep, 1985, 5: 1–85CrossRefGoogle Scholar
  2. 2.
    Hüfner S. Photoelectron Spectroscopy: Principles and Applications. Berlin: Springer, 2003Google Scholar
  3. 3.
    Baraldi A, Comelli G, Lizzit S, Kiskinova M, Paolucci G. Real-time X-ray photoelectron spectroscopy of surface reactions. Surf Sci Rep, 2003, 49: 169–224CrossRefGoogle Scholar
  4. 4.
    Baraldi A. Structure and chemical reactivity of transition metal surfaces as probed by synchrotron radiation core level photoelectron spectroscopy. J Phys: Condens Matter, 2008, 093001Google Scholar
  5. 5.
    Tao F, Grass ME, Zhang YW, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science, 2008, 322: 932–934CrossRefGoogle Scholar
  6. 6.
    Feibelman PJ. First-principles calculational methods for surface-vacancy formation energies, heats of segregation, and surface core-level shifts. Phys Rev B, 1989, 39: 4872CrossRefGoogle Scholar
  7. 7.
    Methfessel M, Hennig D, Scheffler M. Ab initio calculations of the initial-state and final-state effects on the surface core-level shift of transition-metals. Surf Sci, 1993, 287: 785–788CrossRefGoogle Scholar
  8. 8.
    Alden M, Skriver HL, Johansson B. Ab initio surface core-level shifts and surface segregation energies. Phys Rev Lett, 1993, 71: 2449–2452CrossRefGoogle Scholar
  9. 9.
    Andersen JN, Hennig D, Lundgren E, Methfessel M, Nyholm R, Scheffler M. Surface core-level shifts of some 4d-metal single-crystal surfaces-experiments and ab-initio calculations. Phys Rev B, 1994, 50: 17525–17533CrossRefGoogle Scholar
  10. 10.
    Pasquarello A, Hybertsen MS, Car R. Si 2p core-level shifts at the Si(001)-SiO2 interface-A first-principles study. Phys Rev Lett, 1995, 74: 1024–1027CrossRefGoogle Scholar
  11. 11.
    Schmidt WG, Kackell P, Bechstedt F. 3d core-level shifts at Se/GaAs(110). Surf Sci, 1996, 358: 545–549CrossRefGoogle Scholar
  12. 12.
    Cho JH, Kang MH, Terakura K. Si 2p core-level shifts at the As/Si(001) and Sb/Si(001) surfaces. Phys Rev B, 1997, 55: 15464–15466CrossRefGoogle Scholar
  13. 13.
    Rignanese GM, Pasquarello A, Charlier JC, Gonze X, Car R. Nitrogen incorporation at Si(001)-SiO2 interfaces: Relation between N 1s core-level shifts and microscopic structure. Phys Rev Lett, 1997, 79: 5174–5177CrossRefGoogle Scholar
  14. 14.
    Ganduglia-Pirovano MV, Scheffler M, Baraldi A, Lizzit S, Comelli G, Paolucci G, Rosei R. Oxygen-induced Rh 3d(5/2) surface core-level shifts on Rh(111). Phys Rev B, 2001, 63: 205415CrossRefGoogle Scholar
  15. 15.
    Lizzit S, Baraldi A, Groso A, Reuter K, Ganduglia-Pirovano MV, Stampl C, Scheffler M, Stichler M, Keller C, Wurth W, Menzel D. Surface core-level shifts of clean and oxygen-covered Ru(0001). Phys Rev B, 2001, 63: 205419CrossRefGoogle Scholar
  16. 16.
    Birgersson M, Almbladh CO, Borg M, Andersen JN. Density-functional theory applied to Rh(111) and CO/Rh(111) systems: Geometries, energies, and chemical shifts. Phys Rev B, 2003, 67: 045402CrossRefGoogle Scholar
  17. 17.
    Köhler L, Kresse G. Density functional study of CO on Rh(111). Phys Rev B, 2004, 70: 165405CrossRefGoogle Scholar
  18. 18.
    Ji W, Lu ZY, Gao H. Electron core-hole interaction and its induced ionic structural relaxation in molecular systems under X-ray irradiation. Phys Rev Lett, 2006, 97: 246101CrossRefGoogle Scholar
  19. 19.
    Yang MM, Bao XH, Li WX. Density functional theory study of CHx (x = 1−3) adsorption on clean and CO precovered Rh(111) surfaces. J Chem Phys, 2007, 127: 024705CrossRefGoogle Scholar
  20. 20.
    Zeng ZH, Da Silva JLF, Deng HQ, Li WX. Density functional theory study of the energetics, electronic structure, and core-level shifts of NO adsorption on the Pt(111) surface. Phys Rev B, 2009, 79: 205413CrossRefGoogle Scholar
  21. 21.
    Baraldi A, Bianchettin L, Vesselli E, Gironcoli Sd, Lizzit S, Petaccia L, Zampieri G, Comelli G, Rosei R. Highly under-coordinated atoms at Rh surfaces: interplay of strain and coordination effects on core level shift. New J Phys, 2007, 9: 143CrossRefGoogle Scholar
  22. 22.
    Bianchettin L, Baraldi A, de Gironcoli S, Vesselli E, Lizzit S, Petaccia L, Comelli G, Rosei R. Core level shifts of undercoordinated Pt atoms. J Chem Phys, 2008, 128: 114706CrossRefGoogle Scholar
  23. 23.
    Wang JG, Li WX, Borg M, Gustafson J, Mikkelsen A, Pedersen TM, Lundgren E, Weissenrieder J, Klikovits J, Schmid M, Hammer B, Andersen JN. One-dimensional PtO2 at Pt steps: Formation and reaction with CO. Phys Rev Lett, 2005, 95: 256102CrossRefGoogle Scholar
  24. 24.
    Zhang W, Yang J, Luo Y, Monti S, Carravetta V. Quantum molecular dynamics study of water on TiO2(110) surface. J Chem Phys, 2008, 129: 064703CrossRefGoogle Scholar
  25. 25.
    Resta A, Gustafson J, Westerstrom R, Mikkelsen A, Lundgren E, Andersen JN, Yang MM, Ma XF, Bao XH, Li WX. Step enhanced dehydrogenation of ethanol on Rh. Surf Sci, 2008, 602: 3057–3068CrossRefGoogle Scholar
  26. 26.
    Chong DP. Accurate calculation of core-electron binding energies by the density-functional method. Chem Phys Lett, 1995, 232: 486–490CrossRefGoogle Scholar
  27. 27.
    Triguero L, Plashkevych O, Pettersson LGM, Agren H. Separate state vs. transition state Kohn-Sham calculations of X-ray photoelectron binding energies and chemical shifts. J Electron Spectrosc Relat Phenom, 1999, 104: 195–207CrossRefGoogle Scholar
  28. 28.
    Olovsson W, Goansson C, Marten T, Abrikosov IA. Core-level shifts in complex metallic systems from first principle. Physica Status Solidi (B), 2006, 243: 2447–2464CrossRefGoogle Scholar
  29. 29.
    Lundgren E, Kresse G, Klein C, Borg M, Andersen JN, De Santis M, Gauthier Y, Konvicka C, Schmid M, Varga P. Two-dimensional oxide on Pd(111). Phys Rev Lett, 2002, 88: 246103CrossRefGoogle Scholar
  30. 30.
    Todorova M, Lundgren E, Blum V, Mikkelsen A, Gray S, Gustafson J, Borg M, Rogal J, Reuter K, Andersen JN, Scheffler M. The Pd(100)-(√5×√5)R27°-O surface oxide revisited. Surf Sci, 2003, 541: 101–112CrossRefGoogle Scholar
  31. 31.
    Weinert M, Watson RE. Core-level shifts in bulk alloys and surface adlayers. Phys Rev B, 1995, 51: 17168–17180CrossRefGoogle Scholar
  32. 32.
    Slater JC. Quantum Theory of Molecules and Solides. New York: McGraw-Hill, 1974Google Scholar
  33. 33.
    Williams AR, deGroot RA, Sommers CB. Generalization of Slater’s transition state concept. J Chem Phys, 1975, 63: 628–CrossRefGoogle Scholar
  34. 34.
    Janak JF. Proof that ∂E/∂n i = å in density-functional theory. Phys Rev B, 1978, 18: 7165–7168CrossRefGoogle Scholar
  35. 35.
    Marsman M, Kresse G. Relaxed core projector-augmented-wave method. J Chem Phys, 2006, 125: 104101CrossRefGoogle Scholar
  36. 36.
    Reuter K, Scheffler M. Surface core-level shifts at an oxygen-rich Ru surface: O/Ru(0001) vs. RuO2(110). Surf Sci, 2001, 490: 20–28CrossRefGoogle Scholar
  37. 37.
    Gustafson J, Borg M, Mikkelsen A, Gorovikov S, Lundgren E, Andersen JN. Identification of step atoms by high resolution core level spectroscopy. Phys Rev Lett, 2003, 91: 056102CrossRefGoogle Scholar
  38. 38.
    Lundgren E, Johansson U, Nyholm R, Andersen JN. Surface core-level shift of the Mo(110) surface. Phys Rev B, 1993, 48: 5525–5529CrossRefGoogle Scholar
  39. 39.
    Nyholm R, Qvarford M, Andersen JN, Sorensen SL, Wigren C. The surface core-level shift of the Pd(100) single-crystal surface. J Phys: Condens Matter, 1992, 4: 277–283CrossRefGoogle Scholar
  40. 40.
    Gajdos M, Eichler A, Hafner J. Ab initio density functional study of O on the Ag(001) surface. Surf Sci, 2003, 531: 272–286CrossRefGoogle Scholar
  41. 41.
    Zhu JF, Kinne M, Fuhrmann T, Denecke R, Steinrück HP. In situ high-resolution XPS studies on adsorption of NO on Pt(111). Surf Sci, 2003, 529: 384–396CrossRefGoogle Scholar
  42. 42.
    Gustafson J, Mikkelsen A, Borg M, Lundgren E, Kohler L, Kresse G, Schmid M, Varga P, Yuhara J, Torrelles X, Quiros C, Andersen JN. Self-limited growth of a thin oxide layer on Rh(111). Phys Rev Lett, 2004, 92: 126102CrossRefGoogle Scholar
  43. 43.
    Klikovits J, Schmid M, Merte LR, Varga P, Westerstrom R, Resta A, Andersen JN, Gustafson J, Mikkelsen A, Lundgren E, Mittendorfer F, Kresse G. Step-orientation-dependent oxidation: From 1D to 2D oxides. Phys Rev Lett, 2008, 101: 266104CrossRefGoogle Scholar
  44. 44.
    Feibelman PJ, Hammer B, Nørskov JK, Wagner F, Scheffler M, Stumpf R, Watwe R, Dumesic J. The CO/Pt(111) puzzle. J Phys Chem B, 2001, 105: 4018–4025CrossRefGoogle Scholar
  45. 45.
    Wang Y, de Gironcoli S, Hush NS, Reimers JR. Successful a priori modeling of CO adsorption on pt(111) using periodic hybrid density functional theory. J Am Chem Soc, 2007, 129: 10402–10407CrossRefGoogle Scholar
  46. 46.
    Hu QM, Reuter K, Scheffler M. Towards an exact treatment of exchange and correlation in materials: Application to the “CO adsorption puzzle” and other systems. Phys Rev Lett, 2007, 98: 176103CrossRefGoogle Scholar
  47. 47.
    Alaei M, Akbarzadeh H, Gholizadeh H, de Gironcoli S. CO/Pt(111): GGA density functional study of site preference for adsorption. Phys Rev B, 2008, 77: 085414CrossRefGoogle Scholar
  48. 48.
    Vesselli E, Baraldi A, Comelli G, Lizzit S, Rosei R. Ethanol decomposition: C-C cleavage selectivity on Rh(111). ChemPhysChem, 2004, 5: 1133–1140CrossRefGoogle Scholar
  49. 49.
    Beutler A, Lundgren E, Nyholm R, Andersen JN, Setlik BJ, Heskett D. Coverage- and temperature-dependent site occupancy of carbon monoxide on Rh(111) studied by high-resolution core-level photoemission. Surf Sci, 1998, 396: 117–136CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer Berlin Heidelberg 2010

Authors and Affiliations

  • ZhenHua Zeng
    • 1
    • 2
  • XiuFang Ma
    • 1
    • 2
  • WuChen Ding
    • 1
    • 2
  • WeiXue Li
    • 1
    • 2
  1. 1.State Key Laboratory of Catalysis and Center for Theoretical and Computational ChemistryChinese Academy of SciencesDalianChina
  2. 2.Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations