Advertisement

Science China Chemistry

, Volume 53, Issue 2, pp 411–418 | Cite as

Density functional theory (DFT)-based modified embedded atom method potentials: Bridging the gap between nanoscale theoretical simulations and DFT calculations

  • Fan Yang
  • YuWen Liu
  • LiHui Ou
  • Xin Wang
  • ShengLi ChenEmail author
Articles
  • 242 Downloads

Abstract

A density functional theory (DFT)-calculation scheme for constructing the modified embedded atom method (MEAM) potentials for face-centered cubic (fcc) metals is presented. The input quantities are carefully selected and a more reliable DFT approach for surface energy determination is introduced in the parameterization scheme, enabling MEAM to precisely predict the surface and nanoscale properties of metallic materials. Molecular dynamics simulations on Pt and Au crystals show that the parameterization employed leads to significantly improved accuracy of MEAM in calculating the surface and nanoscale properties, with the results agreeing well with both DFT calculations and experimental observations. The present study implies that rational DFT parameterization of MEAM may lead to a theoretical tool to bridge the gap between nanoscale theoretical simulations and DFT calculations.

Keywords

theoretical simulations MEAM DFT parameterization nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11426_2010_69_MOESM1_ESM.pdf (549 kb)
Supplementary material, approximately 340 KB.

References

  1. 1.
    Johannesson GH, Bligaard T, Ruban AV, Skriver HL, Jacobsen KW, Norskov JK. Combined electronic structure and evolutionary search approach to materials design. Phys Rev Lett, 2002, 88: 255506CrossRefGoogle Scholar
  2. 2.
    Baskes MI. Modified embedded-atom potentials for cubic materials and impurities. Phys Rev B, 1992, 46: 2727–2742CrossRefGoogle Scholar
  3. 3.
    Daw MS, Baskes MI. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys Rev Lett, 1983, 50: 1285–1288CrossRefGoogle Scholar
  4. 4.
    Daw MS. Model of metallic cohesion: The embedded-atom method. Phys Rev B, 1989, 39: 7441–7452CrossRefGoogle Scholar
  5. 5.
    Beurden PV, Kramer GJ. Parametrization of modified embedded-atom-method potentials for Rh, Pd, Ir, and Pt based on density functional theory calculations, with applications to surface properties. Phys Rev B, 2001, 63: 165106CrossRefGoogle Scholar
  6. 6.
    Luyten J, Schurmans M, Creemers C, Bunnik BS, Kramer GJ. Construction of modified embedded atom method potentials for Cu, Pt and Cu-Pt and modeling surface segregation in Cu3Pt alloys. Surf Sci, 2007, 601: 2952–2961CrossRefGoogle Scholar
  7. 7.
    Rose JH, Smith JR, Guinea F, Ferrante J. Universal features of the equation of state of metals. Phys Rev B, 1984, 29: 2963–2969CrossRefGoogle Scholar
  8. 8.
    Baskes MI, Nelson JS, Wright AF. Semiempirical modified embedded-atom potentials for silicon and germanium. Phys Rev B, 1989, 40: 6085–6100CrossRefGoogle Scholar
  9. 9.
    Banerjea A, Smith JR. Origins of the universal binding-energy relation. Phys Rev B, 1988, 37: 6632–6645CrossRefGoogle Scholar
  10. 10.
    Saunders N, Miodownik AP, Dinsdale A T. Metastable lattice stabilities for the elements. Calphad, 1988, 12: 351–374CrossRefGoogle Scholar
  11. 11.
    Lee BJ, Baskes MI, Kim H, Cho YK. Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys Rev B, 2001, 64: 184102CrossRefGoogle Scholar
  12. 12.
    Perdew JP, Burke K, Emzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868CrossRefGoogle Scholar
  13. 13.
    Fiorentini V, Methfessel M. Extracting convergent surface energies from slab calculations. J Phys: Condens Matter, 1996, 8: 6525–6529CrossRefGoogle Scholar
  14. 14.
    Wang L, Roudgar A, Eikerling M. Ab initio study of stability and site-specific oxygen adsorption energies of Pt nanoparticles. J Phys Chem C, 2009, 113: 17989–17996CrossRefGoogle Scholar
  15. 15.
    Wasserman HJ, Vermaak JS. On the determination of the surface stress of copper and platinum. Surf Sci, 1972, 32: 168–174CrossRefGoogle Scholar
  16. 16.
    Jiang Q, Liang LH, Zhao DS. Lattice contraction and surface stress of fcc nanocrystals. J Phys Chem B, 2001, 105: 6275–6277CrossRefGoogle Scholar
  17. 17.
    Oudenhuijzen MK, Bitter JH, Koningsberger DC. The nature of the Pt-H bonding for strongly and weakly bonded hydrogen on platinum. A XAFS spectroscopy study of the Pt-H antibonding Shaperesonance and Pt-H EXAFS. J Phys Chem B, 2001, 105: 4616CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer Berlin Heidelberg 2010

Authors and Affiliations

  • Fan Yang
    • 1
    • 2
  • YuWen Liu
    • 1
  • LiHui Ou
    • 1
  • Xin Wang
    • 2
  • ShengLi Chen
    • 1
    Email author
  1. 1.Hubei Electrochemical Power Sources Key Laboratory, Department of ChemistryWuhan UniversityWuhanChina
  2. 2.School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations