Science China Chemistry

, Volume 53, Issue 2, pp 432–437 | Cite as

Preparation of optical active polydiacetylene through gelating and the control of supramolecular chirality

Articles

Abstract

Achiral diacetylene 10,12-pentacosadinoic acid (PCDA) and a chiral low-molecular-weight organogelator could form co-gel in organic solvent and it could be polymerized in the presence of Zn(II) ion or in the corresponding xerogel under UV-irradiation. Optically active polydiacetylene (PDA) were subsequently obtained. Supramolecular chirality of PDA could be controlled by the chirality of gelators. Left-handed and right-handed helical fibers were obtained by using L- and D-gelators in xerogels respectively, and CD spectra exhibited mirror-image circular dichroism. The PDA in xerogel exhibited typical blue-to-red transition responsive to the temperature and pH, while the supramolecular chirality of PDA showed a corresponding change.

Keywords

diacetylene low-molecular-weight organogel induced chirality supramolecular chirality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fujiki M, Koe JR, Terao K, Sato T, Teramoto A, Watanabe J. Optically active polysilanes. Ten years of progress and new polymer twist for nanoscience and nanotechnology. Polym J, 2003, 35: 297–344CrossRefGoogle Scholar
  2. 2.
    Yashima E, Maeda K, Okamoto Y. Memory of macromolecular helicity assisted by interaction with achiral small molecules. Nature, 1999, 399: 449–451CrossRefGoogle Scholar
  3. 3.
    Hopkins TE, Wagener KB. Chiral polyolefins. Adv Mater, 2002, 14: 1703–1715CrossRefGoogle Scholar
  4. 4.
    Chen PL, Ma XG, Liu MH. Optically active phthalocyaninatopolysiloxane constructed from achiral monomers: From noncovalent assembly to covalent polymer. Macromolecules, 2007, 40:4780–4784CrossRefGoogle Scholar
  5. 5.
    Yan Y, Yu Z, Huang Y W, Yuan W X, Wei Z X. Helical polyaniline nanofibers induced by chiral dopants by a polymerization process. Adv Mater, 2007, 19: 3353–3357CrossRefGoogle Scholar
  6. 6.
    Nonokawa R, Yashima E. Detection and amplification of a small enantiomeric imbalance in alpha-amino acids by a helical poly (phenylacetylene) with crown ether pendants. J Am Chem Soc, 2003, 125: 1278–1283CrossRefGoogle Scholar
  7. 7.
    Onouchi H, Maeda K, Yashima E. A helical polyelectrolyte induced by specific interactions with biomolecules in water. J Am Chem Soc, 2001, 123: 7441–7442CrossRefGoogle Scholar
  8. 8.
    Charych DH, Nagy JO, Spevak W, Bednarski MD. Direct colorimetric detection of a receptor-ligand interaction by a ploymerized bilayer assembly. Science, 1993, 261: 585–588CrossRefGoogle Scholar
  9. 9.
    Ma ZF, Li JR, Liu MH, Cao J, Zou ZY, Tu J, Jiang L. Colorimetric detection of Escherichia coli by polydiacetylene vesicles functionalized with glycolipid. J Am Chem Soc, 1998, 120: 12678–12679CrossRefGoogle Scholar
  10. 10.
    Lu YF, Yang Y, Sellinger A, Lu MC, Huang JM, Fan HY, Haddad R, Lopez G, Burns AR, Sasaki DY, Lu YF, Yang Y, Sellinger A, Lu MC, Huang JM, Fan HY, Haddad R, Lopez G, Burns AR, Sasaki DY, Shelnutt J, Brinker CJ. Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites. Nature, 2001, 410: 913–917CrossRefGoogle Scholar
  11. 11.
    Reppy MA, Pindzola BA. Biosensing with polydiacetylene materials: structures, optical properties and applications. Chem Commun, 2007: 4317-4338Google Scholar
  12. 12.
    Sada K, Takeuchi M, Fujita N, Numata M, Shinkai S. Post-polymerization of preorganized assemblies for creating shape-controlled functional materials. Chem Soc Rev, 2007, 36: 415–435CrossRefGoogle Scholar
  13. 13.
    Potisatityuenyong A, Rojanathanes R, Turncharern G, Sukwattanasinitt M. Electronic absorption spectroscopy probed side-chain movement in chromic transitions of polydiacetylene vesicles. Langmuir, 2008, 24: 4461–4463CrossRefGoogle Scholar
  14. 14.
    Bhattacharya S, Acharya SNG. Impressive gelation in organic solvents by synthetic, low molecular mass, self-organizing urethane amides of L-phenylalanine. Chem Mater, 1999, 11: 3121–3132CrossRefGoogle Scholar
  15. 15.
    Tamaoki N, Shimada S, Okada Y, Belaissaoui A, Kruk G, Yase K, Matsuda H. Polymerization of a diacetylene dicholesteryl ester having two urethanes in organic gel states. Langmuir, 2000, 16: 7545–7547CrossRefGoogle Scholar
  16. 16.
    Masuda M, Hanada T, Okada Y, Yase K, Shimizu T. Polymerization in nanometer-sized fibers: Molecular packing order and polymerizability. Macromolecules, 2000, 33: 9233–9238CrossRefGoogle Scholar
  17. 17.
    Huang WY, Matsuoka S, Kwei TK, Okamoto Y. Aggregation and gelation of fully conjugated rigid-rod polymers. Poly(2,5-dialkyl-1,4-phenyleneethynylene)s. Macromolecules, 2001, 34: 7166–7171CrossRefGoogle Scholar
  18. 18.
    George M, Weiss RG. Low molecular-mass gelators with diyne functional groups and their unpolymerized and polymerized gel assemblies. Chem Mater, 2003, 15: 2879–2888CrossRefGoogle Scholar
  19. 19.
    Deb P, Yuan ZZ, Ramsey L, Hanks TW. Synthesis and optical properties of chiral polydiacetylenes. Macromolecules, 2007, 40: 3533–3537CrossRefGoogle Scholar
  20. 20.
    Hsu L, Cvetanovich GL, Stupp SI. Peptide amphiphile nanofibers with conjugated polydiacetylene backbones in their core. J Am Chem Soc, 2008, 130: 3892–3899CrossRefGoogle Scholar
  21. 21.
    Drake AF, Udvarhelyi P, Ando DJ, Bloor D, Obhi JS, Mann S. Chiroptical spectroscopic studies of polydiacetylenes. Polymer, 1989, 30: 1063–1069CrossRefGoogle Scholar
  22. 22.
    Wilson RB. Diacetylene monomers and polymers with chiral substituents: Structure, solid-state polymerization, and properties. J Am Chem Soc, 1982, 104: 509–515CrossRefGoogle Scholar
  23. 23.
    Bloor D. FTIR-Raman spectroscopy of polydiacetylenes with chiral pendent groups. Polymer, 1999, 40: 3901–3908CrossRefGoogle Scholar
  24. 24.
    Huang X, Liu MH. Chirality of photopolymerized organized supramolecular polydiacetylene films. Chem Commun, 2003: 66-67Google Scholar
  25. 25.
    Li YG, Wang TY, Liu MH. Gelating-induced supramolecular chirality of achiral porphyrins: chiroptical switch between achiral molecules and chiral assemblies. Soft Matter, 2007, 3: 1312–1317CrossRefGoogle Scholar
  26. 26.
    Huang X, Jiang SG, Liu MH. Metal ion modulated organization and function of the Langmuir-Blodgett films of amphiphilic diacetylene: Photopolymerization, thermochromism, and supramolecular chirality. J Phys Chem B, 2005, 109: 114–119CrossRefGoogle Scholar
  27. 27.
    Wenz G, Mueller MA, Schmidt M, Wegner G. Structure of poly(diacetylenes) in solution. Macromolecules, 1984, 17: 837–850CrossRefGoogle Scholar
  28. 28.
    Percec V, Aqad E, Peterca M, Rudick JG, Lemon L, Ronda JC, De BB, Heiney PA, Meijer EW. Steric communication of chiral information observed in dendronized polyacetylenes. J Am Chem Soc, 2006, 128: 16365–16372CrossRefGoogle Scholar
  29. 29.
    Hoeben FJM, Jonkheijm P, Meijer EW, Schenning A. About supramolecular assemblies of pi-conjugated systems. Chem Rev, 2005, 105: 1491–1546CrossRefGoogle Scholar
  30. 30.
    Song J, Cheng Q, Kopta S, Stevens RC. Modulating artificial membrane morphology: pH-induced chromatic transition and nanostructural transformation of a bolaamphiphilic conjugated polymer from blue helical ribbons to red nanofibers. J Am Chem Soc, 2001, 123: 3205–3213CrossRefGoogle Scholar
  31. 31.
    Günter L, Bernd T, Gerhard W. Structure, phase transitions and polymerizability of multilayers of some diacetylene monocarboxylic acids. Thin Solid Film, 1980, 68: 77–90CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular ScienceChinese Academy of SciencesBeijingChina
  2. 2.CAS Key Laboratory of Colloid, Interface, and Chemical ThermodynamicsChinese Academy of SciencesBeijingChina
  3. 3.Institute of ChemistryChinese Academy of SciencesBeijingChina
  4. 4.College of Chemistry and Chemical EngineeringXi’an University of Science and TechnologyXi’anChina

Personalised recommendations