Science China Chemistry

, Volume 53, Issue 1, pp 3–20 | Cite as

Carbohydrate biomarkers for future disease detection and treatment

  • YunFeng Cheng
  • MinYong Li
  • ShaoRu Wang
  • HanJing Peng
  • Suazette Reid
  • NanTing Ni
  • Hao Fang
  • WenFang Xu
  • BingHe Wang


Carbohydrates are considered as one of the most important classes of biomarkers for cell types, disease states, protein functions, and developmental states. Carbohydrate “binders” that can specifically recognize a carbohydrate biomarker can be used for developing novel types of site specific delivery methods and imaging agents. In this review, we present selected examples of important carbohydrate biomarkers and how they can be targeted for the development of therapeutic and diagnostic agents. Examples are arranged based on disease categories including (1) infectious diseases, (2) cancer, (3) inflammation and immune responses, (4) signal transduction, (5) stem cell transformation, (6) embryo development, and (7) cardiovascular diseases, though some issues cross therapeutic boundaries.


carbohydrates biomarkers imaging agents boronolectins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Timmer MSM, Stocker BL, Seeberger PH. Probing glycomics. Curr Opin Chem Biol, 2007, 11: 59–65CrossRefGoogle Scholar
  2. 2.
    Varki A. Glycan-based interactions involving vertebrate sialic-acidrecognizing proteins. Nature, 2007, 446, 1023–1029CrossRefGoogle Scholar
  3. 3.
    Hecht SM. Bioorganic Chemistry: Carbohydrates. New York: Oxford University Press, 1999Google Scholar
  4. 4.
    Fukuda M, Hindsgaul O. Cell Surface Carbohydrates: Cell-type Specific Expression. New York: Oxford University Press, 2000Google Scholar
  5. 5.
    Andreotti AH, Kahne D. Effects of glycosylation on peptide backbone conformation. J Am Chem Soc, 1993, 115, 3352–3353CrossRefGoogle Scholar
  6. 6.
    Bosques CJ, Tschampel SM, Woods RJ, Imperiali B. Effects of glycosylation on peptide conformation: a synergistic experimental and computational study. J Am Chem Soc, 2004, 126: 8421–8425CrossRefGoogle Scholar
  7. 7.
    Brisson JR, Uhrinova S, Woods RJ, vander Zwan M, Jarrell HC, Paoletti LC, Kasper DL, Jennings HJ. NMR and molecular dynamics studies of the conformational epitope of the type III group B streptococcus capsular polysaccharide and derivatives. Biochemistry, 1997, 36: 3278–3292CrossRefGoogle Scholar
  8. 8.
    Collier E, Carpentier JL, Beitz L, Caro LHP, Taylor SI, Gorden P. Specific glycosylation site mutations of the insulin-receptor alphasubunit impair intracellular-transport. Biochemistry, 1993, 32: 7818–7823CrossRefGoogle Scholar
  9. 9.
    Dennis JW, Granovsky M, Warren CE. Protein glycosylation in development and disease. Bioessays, 1999, 21: 412–421CrossRefGoogle Scholar
  10. 10.
    Lis H, Sharon N. Protein glycosylation-structural and functionalaspects. Eur J Biochem, 1993, 218: 1–2CrossRefGoogle Scholar
  11. 11.
    Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB. Glycosylation changes of igg associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med, 1995, 1: 237–243CrossRefGoogle Scholar
  12. 12.
    Martinez-Maza R, Poyatos I, Lopez-Corcuera B, Nunez E, Gimenez C, Zafra F, Aragon C. The role of N-glycosylation in transport to the plasma membrane and sorting of the neuronal glycine transporter GLYT2. J Biol Chem, 2001, 276: 2168–2173CrossRefGoogle Scholar
  13. 13.
    Montreuil J, Vliegenthart JFG, Schachter H. Glycoproteins and Disease. Armsterdam: Elsevier, 1996, Vol 30Google Scholar
  14. 14.
    Szymanski CM, Wren BW. Protein glycosylation in bacterial mucosal pathogens. Nat Rev Microbiol, 2005, 3: 225–237CrossRefGoogle Scholar
  15. 15.
    Woods RJ, Dwek RA, Edge CJ, Fraserreid B. Molecular mechanical and molecular dynamical simulations of glycoproteins and oligosaccharides. 1. Glycam-93 parameter development. J Phys Chem, 1995, 99: 3832–3846CrossRefGoogle Scholar
  16. 16.
    Xiao H, Cai GP, Liu MY. Fe2+-catalyzed non-enzymatic glycosylation alters collagen conformation during AGE-collagen formation in vitro. Arch Biochem Biophys, 2007, 468: 183–192CrossRefGoogle Scholar
  17. 17.
    Bucala R, Model P, Cerami A. Modification of DNA by reducing sugars: a possible mechanism for nucleic acid aging and age-related dysfunction in gene expression (nonenzymatic browning/Maillard reaction). Proc Natl Acad Sci USA, 1984, 81: 105–109CrossRefGoogle Scholar
  18. 18.
    Vance DE, Vance J. Biochemistry of Lipids, Lipoproteins and Membranes. Amsterdam: Elsevier, 1991, Vol 20Google Scholar
  19. 19.
    Griffitts JS, Haslam SM, Yang TL, Garczynski SF, Mulloy B, Morris H, Cremer PS, Dell A, Adang MJ, Aroian RV. Glycolipids as receptors for bacillus thuringiensis crystal toxin. Science, 2005, 307: 922–925CrossRefGoogle Scholar
  20. 20.
    Kochetkov NK, Smirnova GP. Glycolipids of marine invertebrates. Adv Carbohydr Chem Biochem, 1986, 44: 387–438CrossRefGoogle Scholar
  21. 21.
    Lockhoff O. Glycolipids as immunomodulators: synthesis and properties. Angew Chem Int Ed, 1991, 30: 1611–1620CrossRefGoogle Scholar
  22. 22.
    Wiegandt H. Glycolipids. Amsterdam: Elsevier, 1985Google Scholar
  23. 23.
    Lee AT. The Nonenzymatic glycosylation of dna by reducing sugars in vivo may contribute to dna damage associated with aging. Age, 1987, 10: 150–155CrossRefGoogle Scholar
  24. 24.
    van Leeuwen F, Taylor MC, Mondragon A, Moreau H, Gibson W, Kieft R, Borst P. Beta-d-glucosyl-hydroxymethyluracil is a conserved DNA modification in kinetoplastid protozoans and is abundant in their telomeres. Proc Natl Acad Sci USA, 1998, 95: 2366–2371CrossRefGoogle Scholar
  25. 25.
    Simpson L. A Base Called J. Proc Natl Acad Sci USA, 1998, 95, 2037–2038CrossRefGoogle Scholar
  26. 26.
    Bright RA, Ross TM, Subbarao K, Robinson HL, Katz JM. Impact of glycosylation on the immunogenicity of a DNA-based influenza H5HA Vaccine. Virology, 2003, 308: 270–278CrossRefGoogle Scholar
  27. 27.
    DiPaolo C, Kieft R, Cross M, Sabatini R. Regulation of trypanosome DNA glycosylation by a SWI2/SNF2-like protein. Molecular Cell, 2005, 17: 441–451CrossRefGoogle Scholar
  28. 28.
    Mironova R, Niwa T, Handzhiyski Y, Sredovska A, Ivanov I. Evidence for non-enzymatic glycosylation of escherichia coli chromosomal DNA. Mol Microbiol, 2005, 55: 1801–1811CrossRefGoogle Scholar
  29. 29.
    Reiter WD, Vanzin GF. Molecular genetics of nucleotide sugar interconversion pathways in plants. Plant Mol Biol, 2001, 47: 95–113CrossRefGoogle Scholar
  30. 30.
    Rupprath C, Schumacher T, Elling L. Nucleotide deoxysugars: essential tools for the glycosylation engineering of novel bioactive compounds. Curr Med Che, 2005, 12: 1637–1675CrossRefGoogle Scholar
  31. 31.
    Seifert GJ. Nucleotide Sugar interconversions and cell wall biosynthesis: how to bring the inside to the outside. Curr Opin Plant Biol, 2004, 7: 277–284CrossRefGoogle Scholar
  32. 32.
    Babino A, Oppezzo P, Bianco S, Barrios E, Berois N, Navarrete H, Osinaga E. Tn antigen is a pre-cancerous biomarker in breast tissue and serum in N-nitrosomethylurea-induced rat mammary carcinogenesis. Int J Cancer, 2000, 86: 753–759CrossRefGoogle Scholar
  33. 33.
    Bloomston M, Zhou JX, Rosemurgy AS, Frankel W, Muro-Cacho CA, Yeatman TJ. Fibrinogen Gamma overexpression in pancreatic cancer identified by large-scale proteomic analysis of serum samples. Cancer Res, 2006, 66: 2592–2599CrossRefGoogle Scholar
  34. 34.
    Kyselova Z, Mechref Y, Al Bataineh MM, Dobrolecki LE, Hickey R J, Vinson J, Sweeney CJ, Novotny MV. Alterations in the serum glycome due to metastatic prostate cancer. J Proteome Res, 2007, 6: 1822–1832CrossRefGoogle Scholar
  35. 35.
    Sahni A, Khorana AA, Baggs RB, Peng H, Francis CW. FGF-2 binding to fibrin(ogen) is required for augmented angiogenesis. Blood, 2006, 107: 126–131CrossRefGoogle Scholar
  36. 36.
    Visser CE, Brouwersteenbergen JJE, Betjes MGH, Koomen GCM, Beelen RHJ, Krediet RT. Cancer antigen-125: a bulk marker for the mesothelial mass in stable peritoneal-dialysis patients. Nephrology Dialysis Transplantation, 1995, 10: 64–69Google Scholar
  37. 37.
    Xu Y, Shen ZZ, Wiper DW, Wu MZ, Morton RE, Elson P, Kennedy AW, Belinson J, Markman M, Casey G. Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. J Am Med Assoc, 1998, 280: 719–723CrossRefGoogle Scholar
  38. 38.
    Nimrichter L, Gargir A, Gortler M, Altstock RT, Shtevi A, Weisshaus O, Fire E, Dotan N, Schnaar RL. Intact Cell adhesion to glycan microarrays. Glycobiol, 2004, 14: 197–203CrossRefGoogle Scholar
  39. 39.
    Peracaula R, Royle L, Tabares G, Mallorqui-Fernandez G, Barrabes S, Harvey DJ, Dwek RA, Rudd PM, de Llorens R. Glycosylation of human pancreatic ribonuclease: differences between normal and tumor states. Glycobiol, 2003, 13: 227–244CrossRefGoogle Scholar
  40. 40.
    Tabares G, Radcliffe CM, Barrabes S, Ramirez M, Aleixandre RN, Hoesel W, Dwek RA, Rudd PM, Peracaula R, de Llorens R. Different glycan structures in prostate-specific antigen from prostate cancer sera in relation to seminal plasma PSA. Glycobiology, 2006, 16: 132–145CrossRefGoogle Scholar
  41. 41.
    Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J, 2004, 382: 769–781CrossRefGoogle Scholar
  42. 42.
    Gao SH, Wang W, Wang BH. Building fluorescent sensors for carbohydrates using template-directed polymerizations. Bioorg Chem, 2001, 29: 308–320CrossRefGoogle Scholar
  43. 43.
    Gao XM, Zhang YL, Wang BH. A highly fluorescent water-soluble boronic acid reporter for saccharide sensing that shows ratiometric UV changes and significant fluorescence changes. Tetrahedron, 2005, 61: 9111–9117CrossRefGoogle Scholar
  44. 44.
    Gao XM, Zhang YL, Wang BH. Naphthalene-based water-soluble fluorescent boronic acid isomers suitable for ratiometric and off-on sensing of saccharides at physiological pH. New J Chem, 2005, 29: 579–586CrossRefGoogle Scholar
  45. 45.
    James TD, Shinkai S. Artificial receptors as chemosensors for carbohydrates. In: Penadess, Ed. Host-Guest Chemistry. Berlin: Springer-Verlag, 2002, Vol 218. 159–200CrossRefGoogle Scholar
  46. 46.
    Lin N, Yan J, Huang Z, Altier C, Li MY, Carrasco N, Suyemoto M, Johnston L, Wang SM, Wang Q, Fang H, Caton-Williams J, Wang BH. Design and synthesis of boronic-acid-labeled thymidine triphosphate for incorporation into DNA. Nucleic Acids Res, 2007, 35: 1222–1229CrossRefGoogle Scholar
  47. 47.
    Lis H, Sharon N. Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev, 1998, 98: 637–674CrossRefGoogle Scholar
  48. 48.
    Wang JF, Jin S, Wang BH. A new boronic acid fluorescent reporter that changes emission intensities at three wavelengths upon sugar binding. Tetrahedron Lett, 2005, 46: 7003–7006CrossRefGoogle Scholar
  49. 49.
    Weis WI, Drickamer K. Structural basis of lectin-carbohydrate recognition. Annu Rev Biochem, 1996, 65: 441–473CrossRefGoogle Scholar
  50. 50.
    Yang WQ, Lin L, Wang BH. A new type of boronic acid fluorescent reporter compound for sugar recognition. Tetrahedron Lett, 2005, 46: 7981–7984CrossRefGoogle Scholar
  51. 51.
    Jin S, Cheng YF, Reid S, Li M, Wang B. Carbohydrate recognition by boronolectins, small molecules, and lectins. Med Res Rev, 2009, doi: 10.1002/med.20155Google Scholar
  52. 52.
    Striegler S. Selective carbohydrate recognition by synthetic receptors in aqueous solution. Curr Org Chem, 2003 7: 81–102CrossRefGoogle Scholar
  53. 53.
    Cao HS, Heagy MD. Fluorescent chemosensors for carbohydrates: a decade’s worth of bright spies for saccharides in review. J Fluorescence, 2004, 14: 569–584CrossRefGoogle Scholar
  54. 54.
    Wang W, Gao X, Wang BH. Boronic acid-based sensors for carbohydrates. Curr Org Chem, 2002, 6: 1285–1317CrossRefGoogle Scholar
  55. 55.
    Yan J, Fang H, Wang B. Boronolectins and fluorescent boronolectins-an examination of the detailed chemistry issues important for their design. Med Res Rev, 2005, 25: 490–520CrossRefGoogle Scholar
  56. 56.
    Fukuda M. Cell surface carbohydrates in hematopoietic cell differentiation and malignancy. In: Fukuda M, Ed. Cell Surface Carbohydrates and Cell Development. Boca Raton: CRC Press, 1992. 127–160Google Scholar
  57. 57.
    Fukuda M. Cell Surface Carbohydrates and Cell Development. Boca Raton: CRC Press, 1992Google Scholar
  58. 58.
    Fukuda M. Cell surface carbohydrates: cell-type specific expression. In: Fukuda M, Hindsgaul O, Eds. Molecular Glycobiology. New York: Oxford University Press, 1994. 1–52Google Scholar
  59. 59.
    Fukuda M, Hindsgaul O. Molecular Glycobiology. New York: Oxford University Press, 1994. 1–52Google Scholar
  60. 60.
    Fukuda M. Possible roles of tumor-associated carbohydrate antigens. Cancer Res, 1996, 56, 2237–2244Google Scholar
  61. 61.
    Fukuda M, Hindsgaul O. Molecular and Cellular Glycobiology. New York: Oxford University Press, 2000Google Scholar
  62. 62.
    Springer GF. T and Tn pancarcinoma markers-autoantigenic adhesion molecules in pathogenesis, prebiopsy carcinoma-detection, and long-term breast-carcinoma immunotherapy. Crit Rev Oncog, 1995, 6: 57–85Google Scholar
  63. 63.
    Zhang J, Nakayama J, Ohyama C, Suzuki M, Suzuki A, Fukuda M, Fukuda MN. Sialyl Lewis X-dependent lung colonization of B16 melanoma cells through a selectin-like endothelial receptor distinct from E- or P-selectin. Cancer Res, 2002, 62: 4194–4198Google Scholar
  64. 64.
    Ohyama C, Tsuboi S, Fukuda M. Dual roles of sialyl Lewis X oligosaccharides in tumor metastasis and rejection by natural killer cells. Embo J, 1999, 18: 1516–1525CrossRefGoogle Scholar
  65. 65.
    Mizuquchi S, Nishiyama N, Iwata T, Nishida T, Izumi N, Tsukioka T, Inoue K, Suehiro S. Serum sialyl Lewis X and cytokeratin 19 fragment as a predictive factors for recurrence in patients with stage I non-small cell lung cancer. E J Cancer Suppl, 2007, 6554Google Scholar
  66. 66.
    Fujii Y, Yoshida M, Chien LJ, Kihara K, Kageyama Y, Yasukochi Y, Oshima H. Significance of carbohydrate antigen sialyl-Lewis X, sialyl-Lewis A, and possible unknown ligands to adhesion of human urothelial cancer cells to activated endothelium. Urol Int, 2000, 64: 129–133CrossRefGoogle Scholar
  67. 67.
    Kannagi R. Molecular mechanism for cancer-associated induction of sialyl Lewis X and sialyl Lewis A expression-the warburg effect revisited. Glycoconjugate J, 2003, 20: 353–364CrossRefGoogle Scholar
  68. 68.
    Haltiwanger RS. Regulation of signal transduction pathways in development by glycosylation. Curr Opin Struct Biol, England, 2002, 12: 593–598CrossRefGoogle Scholar
  69. 69.
    Tabares G, Radcliffe CM, Barrabes S, Ramirez M, Aleixandre RN, Hoesel W, Dwek RA, Rudd PM, Peracaula R, de Llorens R. Different glycan structures in prostate-specific antigen from prostate cancer sera in relation to seminal plasma PSA. Glycobiol, 2006, 16: 132–145CrossRefGoogle Scholar
  70. 70.
    An HJ, Miyamoto S, Lancaster KS, Kirmiz C, Li BS, Lam KS, Leiserowitz GS, Lebrilla CB. Profiling of glycans in serum for the discovery of potential biomarkers for ovarian cancer. J Proteome Res, 2006, 5 1626–1635CrossRefGoogle Scholar
  71. 71.
    Barrabes S, Pages-Pons L, Radcliffe CM, Tabares G, Fort E, Royle L, Harvey DJ, Moenner M, Dwek RA, Rudd PM, de Llorens R, Peracaula R. Glycosylation of serum ribonuclease 1 indicates a major endothelial origin and reveals an increase in core fucosylation in pancreatic cancer. Glycobiol, 2007, 17: 388–400CrossRefGoogle Scholar
  72. 72.
    Beckett ML, Wright GL Jr. Characterization of a prostate carcinoma mucin-like antigen (PMA). Int J Cancer, 1995, 62: 703–710CrossRefGoogle Scholar
  73. 73.
    Byrd JC, Bresalier RS. Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev, 2004, 23: 77–99CrossRefGoogle Scholar
  74. 74.
    Casey RC, Oegema TR, Skubitz KM, Pambuccian SE, Grindle SM, Skubitz APN. Cell membrane glycosylation mediates the adhesion, migration, and invasion of ovarian carcinoma cells. Clin Exp Metastasis, 2003, 20: 143–152CrossRefGoogle Scholar
  75. 75.
    Chandrasekaran EV, Xue J, Neelamegham S, Matta KL. The pattern of glycosyl- and sulfotransferase activities in cancer cell lines: a predictor of individual cancer-associated distinct carbohydrate structures for the structural identification of signature glycans. Carbohydrate Res, 2006, 341: 983–994CrossRefGoogle Scholar
  76. 76.
    Dennis JW, Granovsky M, Warren CE. Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta Gen Sub, 1999, 1473: 21–34CrossRefGoogle Scholar
  77. 77.
    Dimitroff CJ, Pera P, Dall’Olio F, Matta KL, Chandrasekaran EV, Lau JTY, Bernacki RJ. Cell surface N-acetylneuraminic acid alpha 2,3-galactoside-dependent intercellular adhesion of human colon cancer cells. Biochem Biophy Res Comm, 1999, 256: 631–636CrossRefGoogle Scholar
  78. 78.
    Dwek MV, Brooks SA. Harnessing changes in cellular glycosylation in new cancer treatment strategies. Current Cancer Targets, 2004, 4: 425–442CrossRefGoogle Scholar
  79. 79.
    Hallouin F, Goupille C, Bureau V, Meflah K, Le Pendu J. Increased tumorigenicity of rat colon carcinoma cells after alpha 1,2-fucosyltransferase FTA anti-sense cdna transfection. Int J Cancer, 1999, 80: 606–611CrossRefGoogle Scholar
  80. 80.
    Hanisch FG, Hanski C, Hasegawa A. Sialyl Lewis(x) antigen as defined by monoclonal antibody AM-3. Is a marker of dysplasia in the colonic adenoma-carcinoma sequence? Cancer Res, 1992, 52: 3138–3144Google Scholar
  81. 81.
    Hanisch FG, Stadie TRE, Deutzmann F, PeterKatalinic J. MUC1 glycoforms in breast cancer-cell line T47D as a model for carcinomaassociated alterations of O-glycosylation. Eur J Biochem, 1996, 236: 318–327CrossRefGoogle Scholar
  82. 82.
    Hernandez JD, Baum LG. Ah, sweet mystery of death! Galectins and control of cell fate. Glycobiol, 2002, 12: 127R–136RCrossRefGoogle Scholar
  83. 83.
    Kirmiz C, Li B, An HJ, Clowers BH, Chew HK, Lam KS, Ferrige A, Alecio R, Borowsky AD, Sulaimon S, Lebrilla CB, Miyamoto S. A serum glycomics approach to breast cancer biomarkers. Mol Cell Proteomics, 2007, 6: 43–55Google Scholar
  84. 84.
    Meichenin M, Rocher J, Galanina O, Bovin N, Nifant’ev N, Sherman A, Cassagnau E, Heymann MF, Bara J, Fraser RH, Le Pendu J. Tk a new colon tumor-associated antigen resulting from altered O-glycosylation. Cancer Res, 2000, 60: 5499–5507Google Scholar
  85. 85.
    Miyamoto S. Clinical applications of glycomic approaches for the detection of cancer and other diseases. Curr Opin Mol Ther, 2006, 8: 507–513Google Scholar
  86. 86.
    Pousset D, Piller V, Bureaud N, Monsigny M, Piller F. Increased alpha 2,6 sialylation of N-glycans in a transgenic mouse model of hepatocellular carcinoma Cancer Res, 1997, 57: 4249–4256Google Scholar
  87. 87.
    Weston BW, Hiller KM, Mayben JP, Manousos GA, Bendt KM, Liu R, Cusack JC. Expression of human alpha(1,3)fucosyltransferase antisense sequences inhibits selectin-mediated adhesion and liver metastasis of colon carcinoma cells. Cancer Res, 1999, 59: 2127–2135Google Scholar
  88. 88.
    Wong NK, Easton RL, Panico M, Sutton-Smith M, Morrison JC, Lattanzio FA, Morris HR, Clark GF, Dell A, Patankar MS. Characterization of the oligosaccharides associated with the human ovarian tumor marker CA125. J Biol Chem, 2003, 278: 28619–28634CrossRefGoogle Scholar
  89. 89.
    Zhao J, Qiu W, Simeone DM, Lubman DM. N-linked glycosylation profiling of pancreatic cancer serum using capillary liquid phase separation coupled with mass spectrometric analysis. J Proteome Res, 2007, doi: 10.1021/pr0604458Google Scholar
  90. 90.
    Zhao J, Simeone DM, Heidt D, Anderson MA, Lubman DM. Comparative serum glycoproteomics using lectin selected sialic acid glycoproteins with mass spectrometric analysis: application to pancreatic cancer serum. J Proteome Res, 2006, 5: 1792–1802CrossRefGoogle Scholar
  91. 91.
    Dargan E, Thompson S, Cantwell BMJ, Wilson RG, Turner GA. Changes in the fucose content of haptoglobin in breast and ovarian cancer: association with disease progression. Glycoconj J, 1984, 1: 37–43CrossRefGoogle Scholar
  92. 92.
    Ohyama C, Hosono M, Nitta K, Oh-eda M, Yoshikawa K, Habuchi T, Arai Y, Fukuda M. Carbohydrate structure and differential binding of prostate specific antigen to maackia amurensis lectin between prostate cancer and benign prostate hypertrophy. Glycobiol, 2004, 14: 671–679CrossRefGoogle Scholar
  93. 93.
    Kyselova Z, Mechref Y, Al Bataineh MM, Dobrolecki LE, Hickey RJ, Vinson J, Sweeney CJ, Novotny MV. Alterations in the serum glycome due to metastatic prostate cancer. J Proteome Res, 2007, 6: 1822–1832CrossRefGoogle Scholar
  94. 94.
    Peracaula R, Tabares G, Royle L, Harvey DJ, Dwek RA, Rudd PM, de Llorens R. Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiol, 2003, 13: 457–470CrossRefGoogle Scholar
  95. 95.
    Tabares G, Jung K, Reiche J, Stephan C, Lein M, Peracaula R, de Llorens R, Hoesel W. Free PSA forms in prostatic tissue and sera of prostate cancer patients: analysis by 2-DE and western blotting of immunopurified samples. Clin Biochem, 2007, 40: 343–350CrossRefGoogle Scholar
  96. 96.
    Peracaula R, Tabares G, Lopez-Ferrer A, Brossmer R, de Bolos C, de Llorens R. Role of sialyltransferases involved in the biosynthesis of Lewis antigens in human pancreatic tumour cells. Glycoconj J, 2005, 22, 135–144CrossRefGoogle Scholar
  97. 97.
    Fernandez-Salas E, Peracaula R, Frazier ML, de Llorens R. Ribonucleases expressed by human pancreatic adenocarcinoma cell lines. Eur J Biochem, 2000, 267: 1484–1494CrossRefGoogle Scholar
  98. 98.
    Birken S. Specific measurement of O-linked core 2 sugar-containing isoforms of hyperglycosylated human chorionic gonadotropin by antibody b152. Tumour Biol, 2005, 26: 131–141CrossRefGoogle Scholar
  99. 99.
    Cole LA. Hyperglycosylated hCG. Placenta, 2007, 28: 977–986CrossRefGoogle Scholar
  100. 100.
    Ang IL, Poon TC, Lai PB, Chan AT, Ngai SM, Hui AY, Johnson PJ, Sung JJ. Study of serum haptoglobin and its glycoforms in the diagnosis of hepatocellular carcinoma: a glycoproteomic approach. J Proteome Res, 2006, 5: 2691–2700CrossRefGoogle Scholar
  101. 101.
    Johnson PJ, Poon TC, Hjelm NM, Ho CS, Blake C, Ho SK. Structures of disease-specific serum alpha-fetoprotein isoforms. Br J Cancer, 2000, 83: 1330–1337CrossRefGoogle Scholar
  102. 102.
    Colman PM. In the influenza viruses: influenza virus neuraminidase, enzyme and antigen. In: Krug RM, Ed. The influenza viruses. New York: Plenum Press, 1993. 175–218Google Scholar
  103. 103.
    Liu C, Air GM. Selection and characterization of a neuraminidaseminus mutant of influenza virus and its rescue by cloned neuraminidase genes. Virology, 1993, 194: 403–407CrossRefGoogle Scholar
  104. 104.
    Crusat M, de Jong MD. Neuraminidase inhibitors and their role in avian and pandemic influenza. Antivir Ther, 2007, 12: 593–602Google Scholar
  105. 105.
    Lowen AC, Palese P. Influenza virus transmission: basic science and implications for the use of antiviral drugs during a pandemic. Infect Disord Drug Targ, 2007, 7: 318–328CrossRefGoogle Scholar
  106. 106.
    Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature, 1998, 393: 648–659CrossRefGoogle Scholar
  107. 107.
    Wyatt R, Sodroski J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science, 1998, 280: 1884–1888CrossRefGoogle Scholar
  108. 108.
    Chan DC, Kim PS. HIV entry and its inhibition. Cell, 1998, 93: 681–684CrossRefGoogle Scholar
  109. 109.
    Damodaran D, Jeyakani J, Chauhan A, Kumar N, Chandra NR, Surolia A. CancerLectinDB: a database of lectins relevant to cancer. Glycoconj J, 2008, 25: 191–198CrossRefGoogle Scholar
  110. 110.
    Dacheux L, Moreau A, Ataman-Onal Y, Biron F, Verrier B, Barin F. Evolutionary dynamics of the glycan shield of the human immunodeficiency virus envelope during natural infection and implications for exposure of the 2G12 epitope. J Virol, 2004, 78: 12625–12637CrossRefGoogle Scholar
  111. 111.
    Balzarini J. Targeting the glycans of gp120: a novel approach aimed at the achilles heel of HIV. Lancet Infect Dis, 2005, 5: 726–731CrossRefGoogle Scholar
  112. 112.
    Bewley CA. Solution structure of a cyanovirin-N:Man alpha 1–2Man alpha complex: structural basis for high-affinity carbohydrate-mediated binding to gp120. Structure, 2001, 9: 931–940CrossRefGoogle Scholar
  113. 113.
    Bolmstedt AJ, O’Keefe BR, Shenoy SR, McMahon JB, Boyd MR. HIV-inhibitory natural products part 71-cyanovirin-N defines a new class of antiviral agent targeting N-linked, high-mannose glycans in an oligosaccharide-specific manner. Mol Pharmacol, 2001, 59: 949–954Google Scholar
  114. 114.
    Bokesch HR, O’Keefe BR, McKee TC, Pannell LK, Patterson GM, Gardella RS, Sowder RC 2nd, Turpin J, Watson K, Buckheit RW Jr, Boyd MR. A potent novel anti-HIV protein from the cultured cyanobacterium scytonema varium. Biochemistry, 2003, 42: 2578–2584CrossRefGoogle Scholar
  115. 115.
    Muller WE, Renneisen K, Kreuter MH, Schroder HC, Winkler I. The d-mannose-specific lectin from gerardia savaglia blocks binding of human immunodeficiency virus type I to H9 cells and human lymphocytes in vitro. J Acquir Immune Defic Syndr, 1988, 1: 453–458Google Scholar
  116. 116.
    Boyce JD, Adler B. The capsule is a virulence determinant in the pathogenesis of pasteurella multocida M1404 (B:2). Infect Immun, 2000, 68: 3463–3468CrossRefGoogle Scholar
  117. 117.
    Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem, 2002, 71: 635–700CrossRefGoogle Scholar
  118. 118.
    Harper M, Boyce JD, Wilkie IW, Adler B. Signature-tagged mutagenesis of pasteurella multocida identifies mutants displaying differential virulence characteristics in mice and chickens. Infect Immun, 2003, 71: 5440–5446CrossRefGoogle Scholar
  119. 119.
    Krivan HC, Roberts DD, Ginsburg V. Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAc beta 1–4Gal found in some glycolipids. Proc Natl Acad Sci USA, 1988, 85: 6157–6161CrossRefGoogle Scholar
  120. 120.
    Kirvan HC, Ginsburg V, Roberts DD. Pseudomonas aeruginosa and pseudomonas cepacia isolated from cystic fibrosis patients bind specifically to gangliotetraosylceramide (asialo GM1) and gangliotriaosylceramide (asialo GM2). Arch Biochem Biophys, 1988, 260: 493–496CrossRefGoogle Scholar
  121. 121.
    Sheth HB, Lee kk, Wong WY, Srivastava G, Hindsqaul O, Hodges RS, Paranchych W, Irvin RT. The pili of pseudomonas aeruginosa strains PAK and PAO bind specifically to the carbohydrate sequence beta GalNAc(1–4)beta Gal found in glycosphingolipids asialo-GM1 and asialo-GM2. Mol Microbiol, 1994, 11: 715–723CrossRefGoogle Scholar
  122. 122.
    Yu L, Lee KK, Hodges RS, Paranchych W, Irvin RT. Adherence of pseudomonas aeruginosa and candida albicans to glycosphingolipid (asialo-GM1) receptors is achieved by a conserved receptor-binding domain present on their adhesins. Infect Immun, 1994, 62: 5213–5219Google Scholar
  123. 123.
    Deal CD, Kirvan HC. Lacto- and ganglio-series glycolipids are adhesion receptor for neisseria gonorrhoeae. J Biol Chem, 1990, 265: 12774–12777Google Scholar
  124. 124.
    Scharfman A, VanBrussel E, Houdret N, Lamblin G, Roussel P. Interactions between glycoconjugates from human respiratory airways and pseudomonas aeruginosa. Ame J Resp Crt Care Med, 1996, S163–S169Google Scholar
  125. 125.
    Popoff MY, Bockemuhl J, Brenner FW, Gheesling LL. Supplement 2000 (no. 44) to the Kauffmann-White scheme. Res Microbiol, 2001, 152: 907–909CrossRefGoogle Scholar
  126. 126.
    Lowe JB. Glycosylation in the control of selectin counter-receptor structure and function. Immunol Rev, 2002, 186: 19–36CrossRefGoogle Scholar
  127. 127.
    Renkonen J, Tynninen O, Hayry P, Paavonen T, Renkonen R. Glycosylation might provide endothelial zip codes for organ-specific leukocyte traffic into inflammatory sites. Am J Pathol, 2002, 161: 543–50Google Scholar
  128. 128.
    Milland J, Sandrin MS. ABO blood group and related antigens, natural antibodies and transplantation. Tissue Antigens, 2006, 68: 459–466CrossRefGoogle Scholar
  129. 129.
    Yamamoto F. ABO blood group system: ABH oligosaccharide antigens, anti-A and anti-B, A and B glycosyltransferases, and ABO genes. Immunohematology, 2004, 20: 3–22Google Scholar
  130. 130.
    Oriol R, Ye Y, Koren E, Cooper DK. Carbohydrate antigens of pig tissues reacting with human natural antibodies as potential targets for hyperacute vascular rejection in pig-to-man organ xenotransplantation. Transplantation, 1993, 56: 1433–1442CrossRefGoogle Scholar
  131. 131.
    Sandrin MS, McKenzie IF. Gal alpha (1,3)Gal, the major xenoantigen( s) recognised in pigs by human natural antibodies. Immunol Rev, 1994, 141: 169–190CrossRefGoogle Scholar
  132. 132.
    Sandrin MS. Gal Knockout pigs: any more carbohydrates? Transplantation, 2007, 84, 8–9CrossRefGoogle Scholar
  133. 133.
    Zhong R. Gal knockout and beyond. Am J Transplant, 2007, 7: 5–11CrossRefGoogle Scholar
  134. 134.
    Galili U. The alpha-gal epitope and the anti-gal antibody in xenotransplantation and in cancer immunotherapy. Immunol Cell Biol, 2005, 83: 674–686CrossRefGoogle Scholar
  135. 135.
    Lapidot T, Petit I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol, 2002, 30: 973–981CrossRefGoogle Scholar
  136. 136.
    Yu J, Vodyanik MA, He P, Slukvin II, Thomson JA. Human embryonic stem cells reprogram myeloid precursors following cell-cell fusion. Stem Cells, 2006, 24: 168–176CrossRefGoogle Scholar
  137. 137.
    Muller T, Eildermann K, Dhir R, Schlatt S, Behr R. Glycan stem-cell markers are specifically expressed by spermatogonia in the adult non-human primate testis. Hum Reprod, 2008, 23: 2292–2298CrossRefGoogle Scholar
  138. 138.
    Guo KT, Schafer R, Paul A, Ziemer G, Wendel HP. Aptamer-based strategies for stem cell research. Mini Rev Med Chem, 2007, 7: 701–705CrossRefGoogle Scholar
  139. 139.
    Lanctot PM, Gage FH, Varki AP. The glycans of stem cells. Curr Opin Chem Biol, 2007, 11: 373–380CrossRefGoogle Scholar
  140. 140.
    Muramatsu T, Muramatsu H. Carbohydrate antigens expressed on stem cells and early embryonic cells. Glycoconj J, 2004, 21: 41–45CrossRefGoogle Scholar
  141. 141.
    Capela A, Temple S. LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron, 2002, 35: 865–875CrossRefGoogle Scholar
  142. 142.
    Kimber SJ, Bagley PR. Cell-surface enrichment of fucosylated glycoconjugates in the 8- to 16-cell mouse embryo. Dev Gene Evol, 1987, 196: 492–498Google Scholar
  143. 143.
    Gheri G, Bryk SG, Sgambati E, Russo G. Chick Embryo metanephros: the glycosylation pattern as revealed with lectin conjugates. Acta Histochem, 1993, 94: 113–124Google Scholar
  144. 144.
    Codogno P, Bernard B, Font J, Aubery M. Changes in protein glycosylation during chick embryo development. Biochim Biophys Acta, 1983, 763: 265–275CrossRefGoogle Scholar
  145. 145.
    Jacquinot P-M, Lèger D, Wieruszeski JM, Coddeville B, Montreuil J, Spik G. Change in glycosylation of chicken transferrin glycans biosynthesized during embryogenesis and primary culture of embryo hepatocytes. Glycobiol, 1994, 4: 617–624CrossRefGoogle Scholar
  146. 146.
    Nagano K, Yoshida Y, Isobe T. Cell surface biomarkers of embryonic stem cells. In: Proteomics, Germany, 2008. Vol 8, 4025–4035CrossRefGoogle Scholar
  147. 147.
    Ulrich H, Magdesian MH, Alves MJM, Colli W. In vitro selection of rna aptamers that bind to cell adhesion receptors of trypanosoma cruzi and inhibit cell invasion. J Biol Chem, 2002, 277: 20756–20762CrossRefGoogle Scholar
  148. 148.
    Zhen B, Song YJ, Guo ZB, Wang J, Zhang ML, Yu SY, Yang RF. In vitro selection and affinity function of the aptamers to bacillus anthracis spores by SELEX. Acta Biochem Biophys Sinica, 2002, 34: 635–642Google Scholar
  149. 149.
    Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold LA Tenascin-C aptamer identified by tumor cell selex: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci USA, 2003, 100: 15416–15421CrossRefGoogle Scholar
  150. 150.
    Wang CL, Zhang M, Yang GA, Zhang DJ, Ding HM, Wang HX, Fan M, Shen BF, Shao NS. Single-stranded dna aptamers that bind differentiated but not parental cells: subtractive systematic evolution of ligands by exponential enrichment. J Biotech, 2003, 102: 15–22CrossRefGoogle Scholar
  151. 151.
    Cerchia L, Duconge F, Pestourie C, Boulay J, Aissouni Y, Gombert K, Tavitian B, de Franciscis V, Libri D. Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. Plos Biology, 2005, 3: 697–704CrossRefGoogle Scholar
  152. 152.
    Shangguan DH, Meng L, Cao ZHC, Xiao ZY, Fang XH, Li Y, Cardona D, Witek RP, Liu C, Tan WH. Identification of liver cancer-specific aptamers using whole live cells. Anal Chem, 2008, 80: 721–728CrossRefGoogle Scholar
  153. 153.
    Kim YM, Liu C, Tan WH. Aptamers generated by cell Selex for biomarker discovery. Biomark Med, 2009, 3: 193–202CrossRefGoogle Scholar
  154. 154.
    Shangguan D, Li Y, Tang ZW, Cao ZHC, Chen HW, Mallikaratchy P, Sefah K, Yang CYJ, Tan WH. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA, 2006, 103: 11838–11843CrossRefGoogle Scholar
  155. 155.
    Liu CC, Mack AV, Tsao M-L, Mills JH, Lee HS, Choe H, Farzan M, Schultz P, Smidere VV. Protein evolution with an expanded genetic code. Proc Natl Acad Sci USA, 2008, 105: 17688–17693CrossRefGoogle Scholar
  156. 156.
    Brustad E, Bushey ML, Lee JW, Groff D, Liu W, Schultz PG. A genetically encoded boronate-containing amino acid. Angew Chem Int Ed, 2008, 47: 8220–8223CrossRefGoogle Scholar
  157. 157.
    Hakomori SI, Yamamura S, Handa K. Signal Transduction through glyco(sphingo)lipids — introduction and recent studies on glyco (sphingo) lipid-enriched microdomains. In: Ledeen RW, Hakomori S, Yates AJ, Schneider JS, Yu RK, Eds. Sphingolipids as Signaling Modulatorsi in the Nervous System. New York: New York Acad Sciences, 1998; Vol. 845 pp 1–10Google Scholar
  158. 158.
    Todeschini AR, Hakomori SI. Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. BBA-GS, 2008, 421–433Google Scholar
  159. 159.
    Hakomori S. Glycosynapses: microdomains controlling carbohydrate-dependent cell adhesion and signaling. An Acad Bras Cienc, 2004, 76: 553–572Google Scholar
  160. 160.
    Iwabuchi K, Yamamura S, Prinetti A, Handa K, Hakomori S. GM3-enriched microdomain involved in cell adhesion and signal transduction through carbohydrate-carbohydrate interaction in mouse melanoma B16 cells. J Biol Chem, 1998, 273: 9130–9138CrossRefGoogle Scholar
  161. 161.
    Iwabuchi K, Zhang YM, Handa K, Withers DA, Sinay P, Hakomori S. Reconstitution of membranes simulating “glycosignaling domain” and their susceptibility to lyso-GM3. J Biol Chem, 2000, 275, 15174–15181CrossRefGoogle Scholar
  162. 162.
    kamemura K, Hart GW. Dynamic Interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: a new paradigm for metabolic control of signal transduction and transcription. Prog Nucleic Acid Res Mol Biol, 2003, 73: 107–136CrossRefGoogle Scholar
  163. 163.
    Kamitani S, Sakata T. Glycosylation of human CRLR at Asn123 is required for ligand binding and signaling. Biochim Biophys Acta-Mol Cell Res, 2001, 1539: 131–139CrossRefGoogle Scholar
  164. 164.
    Vosseller K, Wells L, Lane MD, Hart GW. Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes. Proc Natl Acad Sci USA, 2002, 99: 5313–5318CrossRefGoogle Scholar
  165. 165.
    Cheng XG, Hart GW. Alternative O-glycosylation/O-phosphorylation of serine-16 in murine estrogen receptor beta- post-translational regulation of turnover and transactivation Activity. J Biol Chem, 2001, 276: 10570–10575CrossRefGoogle Scholar
  166. 166.
    Yang WH, Park SY, Nam HW, Kim do H, Kang JG, Kim YS, Lee HC, Kim KS, Cho JW. NFkappaB Activation is associated with its O-GlcNAcylation state under hyperglycemic conditions. Proc Natl Acad Sci USA, 2008, 105: 17345–17350CrossRefGoogle Scholar
  167. 167.
    Taylor RP, Parker GJ, Hazel MW, Soesanto Y, Fuller W, Yazzie MJ, McClain DA. Glucose deprivation stimulates O-GlcNAc modification of proteins through up-regulation of O-linked N-acetylglucosaminyltransferase. J Biol Chem, 2008, 283: 6050–6057CrossRefGoogle Scholar
  168. 168.
    Golks A, Guerini D. The O-linked N-acetylglucosamine modification in cellular signalling and the immune system. Protein modifications: beyond the usual suspects’ review series. Eu Mol Bio Org, 2008, 9: 748–753Google Scholar
  169. 169.
    Slawson C, Lakshmanan T, Knapp S, Hart GW. A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin. Mol Biol Cell, 2008, 19, 4130–4140CrossRefGoogle Scholar
  170. 170.
    Majumdar G, Harmon A, Candelaria R, Martinez-Hernandez A, Raghow R, Solomon SS. O-glycosylation of Sp1 and transcriptional regulation of the calmodulin gene by insulin and glucagon. Am J Physiol -Endocrinol Metab, 2003, 285: E584–E591Google Scholar
  171. 171.
    Gommers-Ampt J, Van Leeuwen F, de Beer A, Vliegenthart J, Dizdaroglu M, Kowalak J, Crain P, Borst P. Beta-d-glucosyl-hydroxymethyluracil: a novel modified base present in the DNA of the parasitic protozoan T. Brucei Cell, 1993, 75: 1129–1136Google Scholar
  172. 172.
    Sabatini R, Meeuwenoord N, van Boom JH, Borst P. Site-specific interactions of JBP with base and sugar moieties in duplex J-DNA. Evidence for both major and minor groove contacts. J Biol Chem, 2002, 277: 28150–28156CrossRefGoogle Scholar
  173. 173.
    Sabatini R, Meeuwenoord N, van Boom JH, Borst P. Recognition of base J in duplex DNA by J-binding protein. J Biol Chem, 2002, 277: 958–966CrossRefGoogle Scholar
  174. 174.
    Borst P, van Leeuwen F. Beta-d-glucosyl-hydroxymethyluracil, a novel base in african trypanosomes and other kinetoplastida. Mol Biochem Parasitol, 1997, 90: 1–8CrossRefGoogle Scholar
  175. 175.
    Cross M, Kieft R, Sabatini R, Wilm M, de Kort M, van der Marel GA, van Boom JH, van Leeuwen F, Borst P. The modified base J is the target for a novel dna-binding protein in kinetoplastid protozoans. Embo J, 1999, 18: 6573–6581CrossRefGoogle Scholar
  176. 176.
    Borst P, Sabatini R. Base J. Discovery, biosynthesis, and possible functions. Annu Rev Microbiol, 2008, 62: 235–251CrossRefGoogle Scholar
  177. 177.
    DiPaolo C, Kieft R, Cross M, Sabatini R. Regulation of trypanosome DNA glycosylation by a SWI2/SNF2-like protein. Mol Cell, 2005, 17: 441–451CrossRefGoogle Scholar
  178. 178.
    Kieft R, Brand V, Ekanayake DK, Sweeney K, DiPaolo C, Reznikoff WS, Sabatini R. JBP2, a SWI2/SNF2-like protein, regulates de novo telomeric dna glycosylation in bloodstream form trypanosoma brucei. Mol Biochem Parasitol, 2007, 156: 24–31CrossRefGoogle Scholar
  179. 179.
    Khaw KT, Wareham N. Glycated hemoglobin as a marker of cardiovascular risk. Curr Opin Lipidology, 2006, 17: 637–643CrossRefGoogle Scholar
  180. 180.
    Dailey G. Assessing glycemic control with self-monitoring of blood glucose and hemoglobin-A(1c) measurements. Mayo Clin Proc, 2007, 82,229-236Google Scholar
  181. 181.
    Goff DC, Gerstein HC, Ginsberg HN, Cushman WC, Margolis KL, Byington RP, Buse JB, Genuth S, Probstfield JL, Simons-Morton DG. Prevention of cardiovascular disease in persons with type 2 diabetes mellitus: current knowledge and rationale for the action to control cardiovascular risk in diabetes (ACCORD) Trial. Am J Cardiol, 2007, 99: 4I–20IGoogle Scholar
  182. 182.
    Zhang QB, Ames JM, Smith RD, Baynes JW, Metz TOA. Perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease. J Proteome Res, 2009, 8: 754–769CrossRefGoogle Scholar
  183. 183.
    Roman G, Hancu N. Early insulin treatment to prevent cardiovascular disease in prediabetes and overt diabetes. Horm Metab Res, 2009, 41: 116–122CrossRefGoogle Scholar
  184. 184.
    Gerstein HC. Is it possible to reduce cardiovascular risk with glucoselowering approaches? Nat Rev Endocrinol, 2009, 5: 270–275CrossRefGoogle Scholar
  185. 185.
    Amadori M. Products of condensation between glucsoe and p-phenetidine. Atti Accad Naz Lincei, 1925, 2: 337–342Google Scholar
  186. 186.
    Hadden JW. Review Article The immunology and immunotherapy of breast cancer: an update. Int J Immunopharmacol, 1999, 21: 79–101CrossRefGoogle Scholar
  187. 187.
    Hodge JE. Chemistry of browning reactions in model systems. J Agric Food Chem, 1953, 1, 928–943CrossRefGoogle Scholar
  188. 188.
    Zucolotto V, Ferreira M, Cordeiro MR, Constantino CJL, Moreira WC, Oliveira ON. Nanoscale processing of polyaniline and phthalocyanines for sensing applications. Sens Actuators B, 2006, 113: 809–815CrossRefGoogle Scholar
  189. 189.
    Bunn HF, Shapiro R, McManus M, Garrick L, McDonald MJ, Gallop PM, Gabbay KH. Structural heterogeneity of human hemoglobin A due to nonenzymatic glycosylation. J Biol Chem, 1979, 254: 3892–3898Google Scholar
  190. 190.
    Pulanic D, Rudan I. The past decade: fibrinogen. Coll Antropol, 2005, 29: 341–349Google Scholar
  191. 191.
    Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost, 2005, 3: 1894–1904CrossRefGoogle Scholar
  192. 192.
    Townsend RR, Hilliker E, Li YT, Laine RA, Bell WR, Lee YC. Carbohydrate structure of human fibrinogen. use of 300-MHz 1H-NMR to characterize glycosidase-treated glycopeptides. J Biol Chem, 1982, 257, 9704–9710Google Scholar
  193. 193.
    Watt KW, Takagi T, Doolittle RF. Amino acid sequence of the beta chain of human fibrinogen. Biochemistry, 1979, 18: 68–76CrossRefGoogle Scholar
  194. 194.
    Wolfenstein-Todel C, Mosesson MW. Carboxy-terminal amino acid sequence of a human fibrinogen gamma-chain variant (gamma’). Biochemistry, 1981, 20: 6146–6149CrossRefGoogle Scholar
  195. 195.
    Gilman PB, Keane P, Martinez J. The role of the carbohydrate moiety in the biologic properties of fibrinogen. J Biol Chem, 1984, 259: 3248–3253Google Scholar
  196. 196.
    Cote HCF, Lord ST, Pratt KP. γ-Chain dysfibrinogenemias: molecular structure-function relationships of naturally occurring mutations in the g-chain of human fibrinogen. Blood, 1998, 92: 2195–2212Google Scholar
  197. 197.
    Raisys V, Molnar J, Winzler RJ. Study of carbohydrate release during the clotting of fibrinogen. Arch Biochem Biophys, 1966, 113: 457–460CrossRefGoogle Scholar
  198. 198.
    Nishibe H, Takahashi N. The release of carbohydrate moieties from human fibrinogen by almond glycopeptidase without alteration in fibrinogen clottability. Biochim Biophys Acta, 1981, 661: 274–279Google Scholar
  199. 199.
    Hamulyak K, Nieuwenhuizen W, Devilee PP, Hemker HC. Reevaluation of some properties of fibrinogen, purified from cord blood of normal newborns. Thromb Res, 1983, 32: 301–310CrossRefGoogle Scholar
  200. 200.
    Langer BG, Weisel JW, Dinauer PA, Nagaswami C, Bell WR. Deglycosylation of fibrinogen accelerates polymerization and increases lateral aggregation of fibrin fibers. J Biol Chem, 1988, 263: 15056–15063Google Scholar
  201. 201.
    Grewal PK, Uchiyama S, Ditto D, Varki N, Le DT, Nizet V, Marth JD. The ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat Med, 2008, 14: 648–655CrossRefGoogle Scholar
  202. 202.
    Gralnick HR, Givelber H, Abrams E. Dysfibrinogenemia associated with hepatoma. Increased carbohydrate content of the fibrinogen molecule. N Engl J Med, 1978, 299: 221–226Google Scholar
  203. 203.
    Maekawa H, Yamazumi K, Muramatsu S, Kaneko M, Hirata H, Takahashi N, Arocha-Pinango CL, Rodriguez S, Nagy H, Perez-Requejo JL. Fibrinogen lima: a homozygous dysfibrinogen with an a alpha-arginine-141 to serine substitution associated with extra N-glycosylation at a alpha-asparagine-139. impaired fibrin Gel formation but normal fibrin-facilitated plasminogen activation catalyzed by tissue-type plasminogen activator. J Clin Invest, 1992, 90: 67–76CrossRefGoogle Scholar
  204. 204.
    Ridgway HJ, Brennan SO, Loreth RM, George PM. Fibrinogen kaiserslautern (gamma 380 Lys to Asn): a new glycosylated fibrinogen variant with delayed polymerization. Br J Haematol, 1997, 99: 562–569CrossRefGoogle Scholar
  205. 205.
    Radhi JM, Lukie BE. Pancreatic cancer and fibrinogen storage disease. J Clin Pathol, 1998 51, 865–867CrossRefGoogle Scholar
  206. 206.
    Yamaguchi T, Yamamoto Y, Yokota S, Nakagawa M, Ito M, Ogura T. Involvement of interleukin-6 in the elevation of plasma fibrinogen levels in lung cancer patients. Jpn J Clin Oncol, 1998, 28: 740–744CrossRefGoogle Scholar
  207. 207.
    Vejda S, Posovszky C, Zelzer S, Peter B, Bayer E, Gelbmann D, Schulte-Hermann R, Gerner C. Plasma from cancer patients featuring a characteristic protein composition mediates protection against apoptosis. Mol Cell Proteomics, 2002, 1: 387–393CrossRefGoogle Scholar
  208. 208.
    Gerner C, Steinkellner W, Holzmann K, Gsur A, Grimm R, Ensinger C, Obrist P, Sauermann G. Elevated plasma levels of crosslinked fibrinogen gamma-chain dimer indicate cancer-related fibrin deposition and fibrinolysis. Thromb Haemost, 2001, 85: 494–501Google Scholar
  209. 209.
    Kuhns DB, Nelson EL, Alvord WG, Gallin JI. Fibrinogen induces IL-8 synthesis in human neutrophils stimulated with formyl-methionylleucyl-phenylalanine or leukotriene B(4). J Immunol, 2001, 167: 2869–2878Google Scholar
  210. 210.
    Lee JH, Ryu KW, Kim S, Bae JM. Preoperative plasma fibrinogen levels in gastric cancer patients correlate with extent of tumor. Hepatogastroenterology, 2004, 51: 1860–1863Google Scholar
  211. 211.
    Nagy JA, Meyers MS, Masse EM, Herzberg KT, Dvorak HF. Pathogenesis of ascites tumor growth: fibrinogen influx and fibrin accumulation in tissues lining the peritoneal cavity. Cancer Res, 1995, 55, 369–375Google Scholar
  212. 212.
    Rybarczyk BJ, Simpson-Haidaris PJ. Fibrinogen assembly, secretion, and deposition into extracellular matrix by mcf-7 human breast carcinoma cells. Cancer Res, 2000, 60: 2033–2039Google Scholar
  213. 213.
    Simpson-Haidaris PJ, Rybarczyk B. Tumors and fibrinogen. the role of fibrinogen as an extracellular matrix protein. Ann NY Acad Sci, 2001, 936: 406–425Google Scholar
  214. 214.
    Palumbo JS, Degen JL. Fibrinogen and tumor cell metastasis. Haemostasis, 2001 31Suppl 1: 11–15Google Scholar
  215. 215.
    Palumbo JS, Potter JM, Kaplan LS, Talmage K, Jackson DG, Degen JL. Spontaneous hematogenous and lymphatic metastasis, but not primary tumor growth or angiogenesis, is diminished in fibrinogen-deficient mice. Cancer Res, 2002, 62: 6966–6972Google Scholar
  216. 216.
    Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ, Kombrinck KW, Jirouskova M, Degen JL. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood, 2005, 105: 178–185CrossRefGoogle Scholar
  217. 217.
    Hatzfeld JA, Hatzfeld A, Maigne J. Fibrinogen and its fragment D stimulate proliferation of human hemopoietic cells in vitro. Proc Natl Acad Sci USA, 1982, 79: 6280–6284CrossRefGoogle Scholar
  218. 218.
    Palumbo JS, Zogg M, Talmage KE, Degen JL, Weiler H, Isermann BH. Role of fibrinogen- and platelet-mediated hemostasis in mouse embryogenesis and reproduction. J Thromb Haemost, 2004, 2: 1368–1379CrossRefGoogle Scholar
  219. 219.
    Hamano A, Mimuro J, Aoshima M, Itoh T, Kitamura N, Nishinarita S, Takano K, Ishiwata A, Kashiwakura Y, Niwa K, Ono T, Madoiwa S, Sugo T, Matsuda M, Sakata Y. Thrombophilic dysfibrinogen Tokyo V with the amino acid substitution of GammaAla327Thr: formation of fragile but fibrinolysis-resistant fibrin clots and its relevance to arterial thromboembolism. Blood, 2004, 103: 3045–3050CrossRefGoogle Scholar
  220. 220.
    Keller MA, Martinez J, Baradet TC, Nagaswami C, Chernysh IN, Borowski MK, Surrey S, Weisel JW. Fibrinogen philadelphia, a hypodysfibrinogenemia characterized by abnormal polymerization and fibrinogen hypercatabolism due to Gamma S378P mutation. Blood, 2005, 105: 3162–3168CrossRefGoogle Scholar
  221. 221.
    Lacombe M, Soria J, Soria C, D’Angelo G, Lavallee R, Bonny Y. Fibrinogen montreal. A new case of congenital dysfibrinogenemia with defective aggregation of monomers. Thromb Diath Haemorrh, 1973, 29: 536–546Google Scholar
  222. 222.
    Lounes KC, Lefkowitz JB, Coates AI, Hantgan RR, Henschen-Edman A, Lord ST. Fibrinogen Longmont. A heterozygous abnormal fibrinogen with B beta Arg-166 to Cys substitution associated with defective fibrin polymerization. Ann NY Acad Sci, 2001, 936: 129–132CrossRefGoogle Scholar
  223. 223.
    Matsuda M, Baba M, Morimoto K, Nakamikawa C. “Fibrinogen Tokyo II”. An abnormal fibrinogen with an impaired polymerization site on the aligned DD domain of fibrin molecules. J Clin Invest, 1983, 72: 1034–1041CrossRefGoogle Scholar
  224. 224.
    Sherman LA, Gaston LW, Kaplan ME, Spivack AR. Fibrinogen ST. Louis: a new inherited fibrinogen variant, coincidentally associated with hemophilia A. J Clin Invest, 1972, 51: 590–597CrossRefGoogle Scholar
  225. 225.
    Soria J, Soria C, Samama M, Poirot E, Kling C. Fibrinogen troyes: fibrinogen metz. two new cases of congenital dysfibrinogenemia. Thromb Diath Haemorrh, 1972, 27: 619–633Google Scholar
  226. 226.
    Sugo T, Nakamikawa C, Takano H, Mimuro J, Yamaguchi S, Mosesson MW, Meh DA, DiOrio JP, Takahashi N, Takahashi H, Nagai K, Matsuda M. Fibrinogen niigata with impaired fibrin assembly: an inherited dysfibrinogen with a Bbeta Asn-160 to Ser substitution associated with extra glycosylation at Bbeta Asn-158. Blood, 1999, 94: 3806–3813Google Scholar
  227. 227.
    Sugo T, Sakata Y, Matsuda M. Structural alterations in hereditary dysfibrinogens. Curr Protein Pept Sci, 2002, 3: 239–247CrossRefGoogle Scholar
  228. 228.
    Okumura N, Terasawa F, Hirota-Kawadobora M, Yamauchi K, Nakanishi K, Shiga S, Ichiyama S, Saito M, Kawai M, Nakahata T. A novel variant fibrinogen, deletion of Bbeta111Ser in coiled-coil region, affecting fibrin lateral aggregation. Clin Chim Acta, 2006, 365: 160–167CrossRefGoogle Scholar
  229. 229.
    Cohn RD, Eklund E, Bergner AL, Casella JF, Woods SL, Althaus J, Blakemore KJ, Fox HE, Hoover-Fong JE, Hamosh A, Braverman NE, Freeze HH, Boyadjiev SA. Intracranial hemorrhage as the initial manifestation of a congenital disorder of glycosylation. Pediatrics, 2006, 118: e514–521CrossRefGoogle Scholar
  230. 230.
    Striegler S, Tewes E. Investigation of sugar-binding sites in ternary ligand-copper(II)-carbohydrate complexes. Eur J Inorg Chem, 2002, 487–495Google Scholar
  231. 231.
    Yang W, Gao X, Wang B. Boronic acid compounds as potential pharmaceutical agents. Med Res Rev, 2003, 23: 346–368CrossRefGoogle Scholar
  232. 232.
    Yang X, Shan J, Cheng Y, Wang B. Boronic acid-based chemosensors. In: Mirsky VM, Yatsimirsky AK, Eds. Artificial Receptors for Chemical Sensors. New York: Wiley-VCH, 2010Google Scholar
  233. 233.
    Yang W, Gao S, Wang B. Biologically active boronic acid compounds. In: Hall D, Ed. Organoboronic Acids. New York: John Wiley and Sons, 2005. 481–512CrossRefGoogle Scholar
  234. 234.
    Ingale S, Wolfert MA, Gaekwad J, Buskas T, Boons GJ. Robust immune responses elicited by a fully synthetic three-component vaccine. Nature Chem Biol, 2007, 3: 663–667CrossRefGoogle Scholar
  235. 235.
    Gabius H-J, Gabius S. Lectins and Glycobiology. New York: Springer-Verlag, 1993Google Scholar
  236. 236.
    Brooks S. Lectin Histochemistry (Microscopy Handbooks). 1 ed. Oxford UK: Garland Science, 1996. 177Google Scholar
  237. 237.
    Kilpatrick DC. Handbook of Animal Lectins: Preperties and Biomedical Applications. Chichester: John Wiley & Sons, 2000Google Scholar
  238. 238.
    Van Damme EJM, Peumans WJ, Pustzai A, Bardocz S. Handbook of Plant Lectins: Properties and Biological applicaions. New York: John Wiley and Sons, 1998Google Scholar
  239. 239.
    James TD, Shinkai S. Artificial receptors as chemosensors for carbohydrates. Top Curr Chem, 2002, 218: 159–200CrossRefGoogle Scholar
  240. 240.
    Manimala JC, Wiskur SL, Ellington AD, Anslyn EV. Tuning the specificity of a synthetic receptor using a selected nucleic acid receptor. J Am Chem Soc, 2004, 126: 16515–16519CrossRefGoogle Scholar
  241. 241.
    Edwards NY, Sager TW, McDevitt JT, Anslyn EV. Boronic acid based peptidic receptors for pattern-based saccharide sensing in neutral aqueous media, an application in real-life samples. J Am Chem Soc, 2007, 129: 13575–13583CrossRefGoogle Scholar
  242. 242.
    Duggan PJ, Offermann DA. Remarkably selective saccharide recognition by solid-supported peptide boronic acids. Tetrahedron, 2009, 65: 109–114CrossRefGoogle Scholar
  243. 243.
    Stones D, Manku S, Xiaosong L, Hall D. Modular solid-phase synthetic approach to optimize structural and electronic properties of oligoboronic acid receptors and sensor for the aqueous recognition of oligosaccharides. Chem Eur J, 2004, 10: 92–100CrossRefGoogle Scholar
  244. 244.
    Zou Y, Broughton DL, Bicker KL, Thompson PR, Lavigne JJ. Peptide borono lectins (PBLs): a new tool for glycomics and cancer diagnostics. Chembiochem, 2007, 8: 2048–2051CrossRefGoogle Scholar
  245. 245.
    Davis AP, Wareham RS. A tricyclic polyamide receptor for carbohydrates in organic media. Angew Chem Int Ed, 1998, 37: 2270–2273CrossRefGoogle Scholar
  246. 246.
    Lecollinet G, Dominey AP, Velasco T, Davis AP. Highly selective disaccharide recognition by a tricyclic octaamide cage. Angew Chem Int Ed, 2002, 41: 4093–4096CrossRefGoogle Scholar
  247. 247.
    Klein E, Crump MP, Davis AP. Carbohydrate recognition in water by a tricyclic polyamide receptor. Angew Chem Int Ed, 2005, 44: 298–302CrossRefGoogle Scholar
  248. 248.
    Ferrand Y, Crump MP, Davis AP. A synthetic lectin analog for biomimetic disaccharide recognition. Science, 2007, 318: 619–622CrossRefGoogle Scholar
  249. 249.
    Ferrand Y, Klein E, Barwell NP, Crump MP, Jimenez-Barbero J, Vicent C, Boons GJ, Ingale S, Davis AP. A synthetic lectin for O-linked beta-N-acetylglucosamine. Angew Chem Int Ed, 2009, 48: 1775–1779CrossRefGoogle Scholar
  250. 250.
    Asher SA, Alexeev VL, Goponenko AV, Sharma AC, Lednev IK, Wilcox CS, Finegold DN. Photonic crystal carbohydrate sensors: low ionic strength sugar sensing. J Am Chem Soc, 2003, 125: 3322–3329CrossRefGoogle Scholar
  251. 251.
    Bielecki M, Eggert H, Norrild JC. A fluorescent glucose sensor binding covalently to all five hydroxy groups of α-d-glucose. A reinvestigation. J Chem Soc, Perkin Trans 2, 1999, 449–455Google Scholar
  252. 252.
    Eggert H, Frederiksen J, Morin C, Norrild JC. A new glucose-selective fluorescent bisboronic acid. first report of strong α-furanose complexation in aqueous solution at physiological pH. J Org Chem, 1999, 64: 3846–3852CrossRefGoogle Scholar
  253. 253.
    James TD, Sandanayake KRAS, Iguchi R, Shinkai S. Novel saccharidephotoinduced electron transfer sensors based on the interaction of boronic acid and amine. J Am Chem Soc, 1995, 117: 8982–8987CrossRefGoogle Scholar
  254. 254.
    Yang W, Fan H, Gao S, Gao X, Ni W, Karnati V, Hooks WB, Carson J, Weston B, Wang B. The first fluorescent diboronic acid sensor specific for hepatocellular carcinoma cells expressing sialyl Lewis X. Chem Biol, 2004, 11: 439–448CrossRefGoogle Scholar
  255. 255.
    Yoon J, Czarnik AW. Fluorescent chemosensors of carbohydrates. a means of chemically communicating the binding of polyols in water based on chelation-enhanced quenching. J Am Chem Soc, 1992, 114: 5874–5875CrossRefGoogle Scholar
  256. 256.
    Badugu R, Lakowicz JR, Geddes CD. Anion sensing using quinolinium based boronic acid probes. Curr Anal Chem, 2005, 1: 157–170CrossRefGoogle Scholar
  257. 257.
    Lim SH, Musto CJ, Park E, Zhong W, Suslick KS. A colorim etric sensor array for detection and identification of sugar. Org Letl, 2008, 10: 4404–4408Google Scholar
  258. 258.
    Kim SK, Kim HN, Xiaoru Z, Lee HN, Lee HN, Soh JH, Swamyand KMK, Yoon J. Recent development of anion selective fluorescent chemosensors. Supramol Chem, 2007, 19: 221–227CrossRefGoogle Scholar
  259. 259.
    Mader HS, Wolfbeis OS. Boronic acid based probes for microdetermination of saccharides and glycosylated biomolecules. Microchimica Acta, 2008, 162: 1–34CrossRefGoogle Scholar
  260. 260.
    Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJS. Fluorescence-based glucose sensors. Biosens Bioelectr, 2005, 20: 2555–2565CrossRefGoogle Scholar
  261. 261.
    Norrild JC, Eggert H. Evidence for mono- and bisdentate boronate complexes of glucose in the furanose form. application of 1 J C-C coupling constants as a structural probe. J Am Chem Soc, 1995, 117: 1479–1484CrossRefGoogle Scholar
  262. 262.
    Springsteen G, Wang B. Alizarin red as a general fluorescent reporter for studying the binding of boronic acids and carbohydrates. Chem Commun, 2001, 1608–1609Google Scholar
  263. 263.
    Yan J, Springsteen G, Deeter S, Wang B. The relationship among pK a, pH, and binding constants in the interactions between boronic acids and diols-it is not as simple as it appears. Tetrahedron, 2004, 60: 11205–11209CrossRefGoogle Scholar
  264. 264.
    Aharoni R, Bronstheyn M, Jabbour A, Zaks B, Srebnik M, Steinberg D. Oxazaborolidine derivatives inducing autoinducer-2 signal transduction in vibrio harveyi. Bioorg Med Chem, doi:10.1016/j.bmc.2007.11.032Google Scholar
  265. 265.
    Cho BT. Oxazaborolidines as asymmetric inducers for the reduction of ketones and ketimines. In: Hall DG, Ed. Boronic Acids. Weinheim: Wiley-VCH, 2005. 411–439CrossRefGoogle Scholar
  266. 266.
    Jabbour A, Steinberg D, Dembitsky VM, Moussaieff A, Zaks B, Srebnik M. Synthesis and evaluation of oxazaborolidines for antibacterial activity against streptococcus mutans. J Med Chem, 2004, 47: 2409–2410CrossRefGoogle Scholar
  267. 267.
    Mohler LK, Czarnik AW. α-Amino acid chelative complexation by an arylboronic acid. J Am Chem Soc,1994, 116: 2233CrossRefGoogle Scholar
  268. 268.
    Gamsey S, Miller A, Olmstead MM, Beavers CM, Hirayama LC, Pradhan S, Wessling RA, Singaram B. Boronic acid-based bipyridinium salts as tunable receptors for monosaccharides and alpha-hydroxycarboxylates. J Am Chem Soc,2007, 129: 1278–1286CrossRefGoogle Scholar
  269. 269.
    Gray CW Jr, Houston TA. Boronic acid receptors for X-hydroxycarboxlates: high affinity of shinkai’s glucose receptor for tartrate. J Org Chem, 2002, 67: 5426–5428CrossRefGoogle Scholar
  270. 270.
    Wang Z, Zhang DQ, Zhu DB. A new saccharide sensor based on a tetrathiafulvalene-anthracene dyad with a boronic acid group. J Org Chem, 2005, 70, 5729–5732CrossRefGoogle Scholar
  271. 271.
    Wiskur SL, Lavigne JL, Ait-Haddou H, Lynch V, Chiu YH, Canary JW, Anslyn EV. pK a Valuaes and geometries of secondary and tertiary amines complexed to boronic acids-implications for sensor design. Org Lett, 2001, 3: 1311–1314CrossRefGoogle Scholar
  272. 272.
    Dowlut M, Hall DG. An improved class of sugar-binding boronic acids, soluble and capable of complexing glycosides in neutral water. J Am Chem Soc, 2006, 128: 4226–4227CrossRefGoogle Scholar
  273. 273.
    Hiratake J, Oda J. Aminophosphonic and aminoboronic acids as key elements of a transition state analogue inhibitor of enzymes. Biosci Biotech Biochem, 1997, 61, 211–218CrossRefGoogle Scholar
  274. 274.
    Gallardo-Williams MT, Maronpot RR, Wine RN, Brunssen SH, Chapin RE. Inhibition of the enzymatic activity of prostate-specific antigen by boric acid and 3-nitrophenyl boronic acid. Prostate, 2003, 54: 44–49CrossRefGoogle Scholar
  275. 275.
    Adams J, Kauffman M. Development of the proteasome inhihitor veleade((TM)) (Bortezomib). Can Invest, 2004, 22: 304–311CrossRefGoogle Scholar
  276. 276.
    Bacha U, Barrila J, Velazquez-Campoy A, Leavitt SA, Freire E. Identification of novel inhibitors of the SARS coronavirus main protease 3CLpro. Biochemistry, 2004, 43: 4906–4912CrossRefGoogle Scholar
  277. 277.
    Holyoak T, Wilson MA, Fenn TD, Kettner CA, Petsko GA, Fuller RS, Ringe D. 2.4 Angstrom resolution crystal structure of the prototypical hormone-processing protease Kex2 in complex with an Ala-Lys-Arg boronic acid inhibitor. Biochemistry, 2003, 42: 6709–6718CrossRefGoogle Scholar
  278. 278.
    Snow RJ, Bachovchin WW, Barton RW, Campbell SJ, Coutts SJ, Freeman DM, Gutheil WG, Kelly TA, Kennedy CA, Krolikowski DA, Leonard SF, Pargellis CA, Tong I, Adams J. Studies on proline boronic acid dipeptide inhibitors of dipeptidyl peptidase — IV — identifycation of a cyclic species containing a B-N bond. J Am Chem Soc, 1994, 116: 10860–10869CrossRefGoogle Scholar
  279. 279.
    Geele G, Garrett E, Hageman HJ. Effect of benzene boronic acids on sporulation and on production of enzymes in bacillus subtilis cells. Spores VI. Am Soc Micro, 1975, 391–396Google Scholar
  280. 280.
    Farr-Jones S, Smith SO, Kettner CA, Griffin RG, Bachovchin WW. Crystal versus solution structure of enzymes: NMR spectroscopy of a peptide boronic acid-serine protease complex in the crystalline state. Proc Natl Acad Sci USA, 1989, 86: 6922–6924CrossRefGoogle Scholar
  281. 281.
    Groll M, Berkers CR, Ploegh HL, Ovaa H. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20s proteasome. Structure, 2006, 14: 451–456CrossRefGoogle Scholar
  282. 282.
    Matthews DA, Alden RA, Birktoft JJ, Freer ST, Kraut J. X-ray crystallographic study of boronic acid adducts with subtilisin BPN’ (novo). a model for the catalytic transition state. J Biol Chem, 1975, 250: 7120–7126Google Scholar
  283. 283.
    Powers RA, Blazquez J, Weston GS, Morosini MI, Baquero F, Shoichet BK. The complexed structure and antimicrobial activity of a non-beta-lactam inhibitor of AmpC beta-lactamase. Protein Sci, 1999, 8, 2330–2337CrossRefGoogle Scholar
  284. 284.
    Powers RA, Shoichet BK. Structure-based approach for binding site identification on AmpC beta-lactamase. J Med Chem, 2002, 45: 3222–3234CrossRefGoogle Scholar
  285. 285.
    Stoll VS, Eger BT, Hynes RC, Martichonok V, Jones JB, Pai EF. Differences in binding modes of enantiomers of 1-acetamido boronic acid based protease inhibitors: crystal structures of gamma-chymotrypsin and subtilisin carlsberg complexes. Biochemistry, 1998, 37: 451–462CrossRefGoogle Scholar
  286. 286.
    Zhong S, Jordan F, Kettner CA, Polgar L. Observation of tightly bound boron-11 nuclear magnetic resonance signals on serine proteases. direct solution evidence for tetrahedral geometry around the boron in the putative transition-state analogs. J Am Chem Soc, 1991, 113: 9429–9435CrossRefGoogle Scholar
  287. 287.
    Bone R, Frank D, Kettner CA, Agard DA. Structural analysis of specificity: a-Lytic protease complexes with analogues of reaction intermediates. Biochemistry 1989, 28: 7600–7609CrossRefGoogle Scholar
  288. 288.
    Badugu R, Lakowicz JR, Geddes CD. Excitation and emission wavelength ratiometric cyanide-sensitive probes for physiological sensing. Anal Chem, 2004, 327: 82–90Google Scholar
  289. 289.
    Badugu R, Lakowicz JR, Geddes CD. Cyanide-sensitive fluorescent probes. Dyes Pigments, 2005, 64,49-55Google Scholar
  290. 290.
    Badugu R, Lakowicz JR, Geddes CD. A wavelength-ratiometric fluoridesensitive probe based on the quinolinium nucleus and boronic acid moiety. Sensors Actuators B-Chem, 2005, 104: 103–110CrossRefGoogle Scholar
  291. 291.
    DiCesare N, Lakowicz JR. New sensitive and selective fluorescent probes for fluoride using boronic acids. Anal Biochem, 2002, 301: 111–116CrossRefGoogle Scholar
  292. 292.
    Oehlke A, Auer AA, Jahre I, Walfort B, Ruffer T, Zoufala P, Lang H, Spange S. Nitro-substituted stilbeneboronate pinacol esters and their fluoro-adducts. fluoride ion induced polarity enhancement of arylboronate esters. J Org Chem, 2007, 72: 4328–4339CrossRefGoogle Scholar
  293. 293.
    Swamy KMK, Lee YJ, Lee HN, Chun J, Kim Y, Kim SJ, Yoon J. A new fluorescein derivative bearing a boronic acid group as a fluorescent chemosensor for fluoride Ion. J Org Chem, 2006, 71: 8626–8628CrossRefGoogle Scholar
  294. 294.
    Cooper CR, Spencer N, James TD. Selective fluorescence detection of fluoride using boronic acids. Chem Commun, 1998, 1365–1366Google Scholar
  295. 295.
    Jin S, Cheng YF, Reid S, Li M, Wang B. Carbohydrate recognition by boronolectins, small molecules, and lectins. Med Res Rev, 2009, doi: 10.1002/med.20155Google Scholar
  296. 296.
    Springsteen G, Wang B. A detailed examination of boronic acid-diol complexation. Tetrahedron, 2002, 58: 5291–5300CrossRefGoogle Scholar
  297. 297.
    Yang W, Lin L, Wang BA. Novel type of fluorescent boronic acid for carbohydrate recognition. Tetrahedron Lett, 2005, 46: 7981–7984CrossRefGoogle Scholar
  298. 298.
    Zhang Y, Ballard CE, Zheng S, Gao X, Ko KC, Yang H, Brandt G, Lou X, Tai PC, Lu C-D, Wang B. Design, synthesis and evaluation of efflux substrate-metal chelator conjugates as potential anti-microbial agents. Bioorg Med Chem Lett, 2007, 17: 707–711CrossRefGoogle Scholar
  299. 299.
    Zhang Y, Li M, Chandrasekaran S, Gao X, Fang X, Lee H-W, Hardcastle K, Yang J, Wang B. A unique quinolineboronic acid-based supramolecular structure that relies on double intermolecular B-N bonds for self-assembly in solid state and in solution. Tetrahedron, 2007, 63: 3287–3292CrossRefGoogle Scholar
  300. 300.
    Zheng SL, Lin N, Reid S, Wang BH. Effect of extended conjugation with a phenylethynyl group on the fluorescence properties of watersoluble arylboronic acids. Tetrahedron, 2007, 63: 5427–5436CrossRefGoogle Scholar
  301. 301.
    Jin S, Wang JF, Li MY, Wang BH. Synthesis, evaluation, and computational studies of naphthalimide-based long-wavelength fluorescent boronic acid reporters. Chem Eur J, 2008, 14: 2795–2804CrossRefGoogle Scholar
  302. 302.
    Jin S, Zhu CY, Li MY, Wang BH. Identification of the first fluorescent alpha-amidoboronic acids that change fluorescent properties upon sugar binding. Bioorg Med Chem Lett, 2009, 19: 1596–1599CrossRefGoogle Scholar
  303. 303.
    Han F, Chi LN, Liang XF, Ji SM, Liu SS, Zhou FK, Wu YB, Han KL, Zhao JZ, James TD. 3,6-Disubstituted carbazole-based bisboronic acids with unusual fluorescence transduction as enantioselective fluorescent chemosensors for tartaric acid. J Org Chem, 2009, 74: 1333–1336CrossRefGoogle Scholar
  304. 304.
    Swamy KMK, Ko SK, Kwon SK, Lee HN, Mao C, Kim JM, Lee KH, Kim J, Shin I, Yoon J. Boronic acid-linked fluorescent and colorimetric probes for copper ions. Chem Commun, 2008, 5915–5917Google Scholar
  305. 305.
    Luvino D, Gasparutto D, Reynaud S, Smietana M, Vasseur JJ. Boronic acid-based fluorescent receptors for selective recognition of thymine glycol. Tetrahedron Lett, 2008, 49: 6075–6078CrossRefGoogle Scholar
  306. 306.
    Berube M, Dowlut M, Hall DG. Benzoboroxoles as efficient glycopyranoside-binding agents in physiological conditions: structure and selectivity of complex formation. J Org Chem, 2008, 73: 6471–6479CrossRefGoogle Scholar
  307. 307.
    Xu WZ, Huang ZT, Zheng QY. Highly efficient fluorescent sensing for alpha-hydroxy acids with c-3-symmetric boronic acid-based receptors. Tetrahedron Lett, 2008, 49: 4918–4921CrossRefGoogle Scholar
  308. 308.
    Chi L, Zhao JZ, James TD. Chiral mono boronic acid as fluorescent enantioselective sensor for mono alpha-hydroxyl carboxylic acids. J Org Chem, 2008, 73: 4684–4687CrossRefGoogle Scholar
  309. 309.
    Liang XF, James TD, Zhao JZ. 6,6’-Bis-substituted BINOL boronic acids as enantio selective and chemoselective fluorescent chemosensors for d-sorbitol. Tetrahedron, 2008, 64: 1309–1315CrossRefGoogle Scholar
  310. 310.
    Akay S, Yang WQ, Wang JF, Lin L, Wang BH. Synthesis and evaluation of dual wavelength fluorescent benzo[b]thiophene boronic acid derivatives for sugar sensing. Chem Biol Drug Des, 2007, 70: 279–289CrossRefGoogle Scholar
  311. 311.
    Schiller A, Wessling RA, Singaram B. A fluorescent sensor array for saccharides based on boronic acid appended bipyridinium salts. Angew Chem Int Ed, 2007, 46: 6457–6459CrossRefGoogle Scholar
  312. 312.
    Cao Z, Nandhikonda P, Heagy MD. Highly water-soluble monoboronic acid probes that show optical sensitivity to glucose based on 4-sulfo-1,8-naphthalic anhydride. J Org Chem, 2009, 74: 3544–3546CrossRefGoogle Scholar
  313. 313.
    Yang W, Gao S, Gao X, Karnati VR, Ni W, Wang B, Hooks WB, Carson J, Weston B. Diboronic acids as fluorescent probes for cells expressing sialyl Lewis X. Bioorg Med Chem Lett, 2002, 12: 2175–2177CrossRefGoogle Scholar
  314. 314.
    Sorensen MD, Martins R, Hindsgaul O. Assessing the terminal glycosylation of a glycoprotein by the naked eye. Angew Chem Int Ed, Engl, 2007, 46: 2403–2407CrossRefGoogle Scholar
  315. 315.
    Ellington AD, Szostak JW. In vitro selection of rna molecules that bind specific ligands. Nature, 1990, 346: 818–822CrossRefGoogle Scholar
  316. 316.
    Robertson DL, Joyce GF. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature, 1990, 344: 467–468CrossRefGoogle Scholar
  317. 317.
    Gold L, Tuerk C. Systematic Evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249: 505–510CrossRefGoogle Scholar
  318. 318.
    Manku S, Hall DG. Synthesis, decoding, and preliminary screening of a bead-supported split-pool library of triboronic acid receptors for complex oligosaccharides. Aust J Chem, 2007, 60: 824–828CrossRefGoogle Scholar
  319. 319.
    Agard NJ, Baskin JM, Prescher JA, Lo A, Bertozzi CR. A comparative study of bioorthogonal reactions with azides. ACS Chem Biol, 2006, 1: 644–648CrossRefGoogle Scholar
  320. 320.
    Agard NJ, Prescher JA, Bertozzi CR. A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc, 2005, 127: 11196–11196CrossRefGoogle Scholar
  321. 321.
    Baskin JM, Bertozzi CR. Bioorthogonal click chemistry: covalent labeling in living systems. QSAR Comb Sci, 2007, 26: 1211–1219CrossRefGoogle Scholar
  322. 322.
    Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzit CR. Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci USA, 2007, 104: 16793–16797CrossRefGoogle Scholar
  323. 323.
    Chang PV, Prescher JA, Hangauer MJ, Bertozzi CR. Imaging cell surface glycans with bioorthogonal chemical reporters. J Am Chem Soc, 2007, 129: 8400CrossRefGoogle Scholar
  324. 324.
    Codelli JA, Baskin JM, Agard NJ, Berozzi CR. Second-generation difluorinated cyclooctynes for copper-free click chemistry. J Am Chem Soc, 2008, 130: 11486–11493CrossRefGoogle Scholar
  325. 325.
    Hangauer MJ, Bertozzi CR. A FRET-based fluorogenic phosphine for live-cell imaging with the staudinger ligation. Angew Chem Int Ed, 2008, 47: 2394–2397CrossRefGoogle Scholar
  326. 326.
    Laughlin ST, Agard NJ, Baskin JM, Carrico IS, Chang PV, Ganguli AS, Hangauer MJ, Lo A, Prescher JA, Bertozzi CR. Metabolic labeling of glycans with azido sugars for visualization and glycoproteomics. In: Glycobiology. San Diego: Elsevier Academic Press Inc, 2006, Vol 415. 230–250Google Scholar
  327. 327.
    Laughlin ST, Baskin J M, Amacher S L, Bertozzi C R. In vivo imaging of membrane-associated glycans in developing zebrafish. Science, 2008, 320: 664–667CrossRefGoogle Scholar
  328. 328.
    Laughlin ST, Bertozzi C. R. Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via staudinger ligation. Nat Protoc, 2007, 2: 2930–2944CrossRefGoogle Scholar
  329. 329.
    Laughlin ST, Bertozzi CR. Imaging the glycome. Proc Natl Acad Sci USA, 2009, 106, 12–17CrossRefGoogle Scholar
  330. 330.
    Prescher JA, Bertozzi CR. Chemistry in living systems. Nat Chem Biol, 2005, 1: 13–21CrossRefGoogle Scholar
  331. 331.
    Prescher JA, Bertozzi CR. Chemical technologies for probing glycans. Cell, 2006, 126: 851–854CrossRefGoogle Scholar
  332. 332.
    Prescher JA, Dube D. H, Bertozzi CR. Chemical remodelling of cell surfaces in living animals. Nature, 2004, 430: 873–877CrossRefGoogle Scholar
  333. 333.
    Rabuka D, Hubbard SC, Laughlin ST, Argade SP, Bertozzi CR. A chemical reporter strategy to probe glycoprotein fucosylation. J Am Chem Soc, 2006, 128: 12078–12079CrossRefGoogle Scholar
  334. 334.
    Saxon E, Bertozzi C. R. Cell surface engineering by a modified staudinger reaction. Science, 2000, 287: 2007–2010CrossRefGoogle Scholar
  335. 335.
    Lewis WG, Green LG, Grynszpan F, Radic Z, Carlier PR, Taylor P, Finn MG, Sharpless KB. Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew Chem Int Edit, 2002, 41: 1053–1057Google Scholar
  336. 336.
    Meldal M, Tornoe CW. Cu-catalyzed azide-alkyne cycloaddition. Chem Rev, 2008, 108, 2952–3015CrossRefGoogle Scholar
  337. 337.
    Huisgen R. 1.3-dipolar cycloadditions. Past and future. Angew Chem Int Ed, 1963, 2: 565–598CrossRefGoogle Scholar
  338. 338.
    Ning XH, Guo J, Wolfert MA, Boons GJ. Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast huisgen cycloadditions. Angew Chem Int Ed, 2008, 47: 2253–2255CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer Berlin Heidelberg 2010

Authors and Affiliations

  • YunFeng Cheng
    • 1
  • MinYong Li
    • 2
  • ShaoRu Wang
    • 1
  • HanJing Peng
    • 1
  • Suazette Reid
    • 1
  • NanTing Ni
    • 1
  • Hao Fang
    • 2
  • WenFang Xu
    • 2
  • BingHe Wang
    • 1
  1. 1.Department of ChemistryGeorgia State UniversityAtlantaUSA
  2. 2.Department of Medicinal Chemistry, School of PharmacyShandong UniversityJinanChina

Personalised recommendations