Advertisement

Magnetic molecular materials with paramagnetic lanthanide ions

  • BingWu Wang
  • ShangDa Jiang
  • XiuTeng Wang
  • Song Gao
Article

Abstract

The diverse magnetic properties of lanthanide-based magnetic molecular materials are introduced in the following organization. First, the general aspects of magnetic molecular materials and electronic states of lanthanide ions are introduced. Then the structures and magnetic properties are described and analyzed for molecules with one lanthanide ion, 4f-4f, 4f-3d and 4f-p magnetic coupling interactions. In each section, magnetic coupling, magnetic ordering and magnetic relaxation phenomenon are briefly reviewed using some examples. Finally, some possibilities of developing magnetic molecular materials containing lanthanide ions are discussed in the outlook part.

Keywords

lanthanide coordination compound magnetic coupling magnetic ordering magnetic relaxation single-molecule magnet single-chain magnet single-ion magnet 

References

  1. 1.
    Hulliger F, Landolt M, Vetsch H. Rare-earth ferricyanides and chromicyanides LnT(CN)6·nH2O. J Solid State Chem, 1976, 18: 283–291CrossRefGoogle Scholar
  2. 2.
    Miller J S, Drillon M. Magnetism: Molecules to Materials. Vol. V. Weinheim: Wiley-VCH, 2005Google Scholar
  3. 3.
    Benelli C, Gatteschi D. Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals. Chem Rev, 2002, 102: 2369–2388CrossRefGoogle Scholar
  4. 4.
    Groenendijk H A, Duyneveldt A J, Willet R D. Experimental study of the effect of domains on the A.C. susceptibility of the weak ferromagnet (C3H7NH3)2MnCl4. Physica B, 1980, 101: 320–328CrossRefGoogle Scholar
  5. 5.
    Ishikawa N, Sugita M, Ishikawa T, Koshihara S, Kaizu Y. Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J Am Chem Soc, 2003, 125: 8694–8695CrossRefGoogle Scholar
  6. 6.
    Ishikawa N, Sugita M, Wernsdorfer W. Quantum tunneling of magnetization in lanthanide single-molecule magnets: bis(phthalocy-aninato) terbium and bis(phthalocyaninato)dysprosium anions. Angew Chem Int Ed, 2005, 44: 2931–2935CrossRefGoogle Scholar
  7. 7.
    Ishikawa N, Sugita M, Okubo T, Tanaka N, Iino T, Kaizu Y. Deter-mination of ligand-field parameters and f-electronic structures of double-decker bis(phthalocyaninato)lanthanide complexes. Inorg Chem, 2003, 42: 2440–2446CrossRefGoogle Scholar
  8. 8.
    Ishikawa N, Iino T, Kaizu Y. Determination of ligand-field parameters and f-electronic structures of hetero-dinuclear phthalocyanine complexes with a diamagnetic yttrium(III) and a paramagnetic trivalent lanthanide ion. J Phys Chem A, 2002, 106: 9543–9550CrossRefGoogle Scholar
  9. 9.
    Ishikawa N, Sugita M, Ishikaw T, Koshihara S, Kaizu Y. Mononuclear lanthanide complexes with a long magnetization relaxation time at high temperatures: A new category of magnets at the single-molecular level. J Phys Chem B, 2004, 108: 11265–11271CrossRefGoogle Scholar
  10. 10.
    Ishikawa N, Sugita M, Tanaka N, Ishikawa T, Koshihara S, Kaizu Y. Upward temperature shift of the intrinsic phase lag of the magnetization of bis(phthalocyaninato)terbium by ligand oxidation creating an S = 1/2 spin. Inorg Chem, 2004, 43: 5498–5500CrossRefGoogle Scholar
  11. 11.
    Takamatsu S, Ishikawa T, Koshihara S, Ishikawa N. Significant increase of the barrier energy for magnetization reversal of a single-4f-ionic single-molecule magnet by a longitudinal contraction of the coordination space. Inorg Chem, 2007, 46: 7250–7252CrossRefGoogle Scholar
  12. 12.
    Ishikawa N, Mizuno Y, Takamatsu S, Ishikawa T, Koshihara S. Effects of chemically induced contraction of a coordination Polyhedron, on the dynamical magnetism of bis(phthalocyaninato)disprosium, a single-4f-ionic single-molecule magnet with a kramers ground state, Inorg Chem, 2008, 47:10217–10219CrossRefGoogle Scholar
  13. 13.
    Ishikawa N. Single molecule magnet with single lanthanide ion. Polyhedron, 2007, 26: 2147–2153CrossRefGoogle Scholar
  14. 14.
    Ishikawa N, Sugita M, Wernsdorfer W. Nuclear spin driven quantum tunneling of magnetization in a new lanthanide single-molecule magnet: bis(phthalocyaninato) holmium anion. J Am Chem Soc, 2005, 127: 3650–3651CrossRefGoogle Scholar
  15. 15.
    AlDamen M A, Clemente-Juan J M, Coronado E, Martí-Gastaldo C, Gaita-Arińo A. Mononuclear lanthanide single-molecule magnets based on polyoxometalates. J Am Chem Soc, 2008, 130: 8874–8875CrossRefGoogle Scholar
  16. 16.
    AlDamen M A, Cardona-Serra S, Clemente-Juan J M, Coronado E, Gaita-Ario A, Mart-Gastaldo C, Luis F, Montero O. Mononuclear lanthanide single molecule magnets based on the polyoxometalates [Ln(W5O18)2]9− and [Ln(β2-SiW11O39)2]13−(LnIII = Tb, Dy, Ho, Er, Tm, and Yb). Inorg Chem, 2009, 48: 3467–3479CrossRefGoogle Scholar
  17. 17.
    Ma B Q, Gao S, Su G, Xu G X, Cyano-bridged 4f-3d coordination polymers with a unique two-dimensional topological architecture and unusual magnetic behavior. Angew Chem Int Ed, 2001, 40: 434–437CrossRefGoogle Scholar
  18. 18.
    Gao S, Su G, Yi T, Ma B Q. Observation of an unusual field-dependent slow magnetic relaxation and two distinct transitions in a family of rare-earth-transition-metal complexes. Phys Rev B, 2001, 63: 054431CrossRefGoogle Scholar
  19. 19.
    Liu Q, Li J, Gao S, Ma B Q, Zhou Q, Bei Y, Liu H. Anions controlled 2D assembly of La-Cu cation array and its unusual magnetic properties. Chem Commun, 2000, 1685–1686Google Scholar
  20. 20.
    Zhang Y Z, Duan G, Sato O, Gao S. Structures and magnetism of cyano-bridged grid-like two-dimensional 4f-3d arrays. J Mater Chem, 2006, 16: 2625–2634CrossRefGoogle Scholar
  21. 21.
    Sugita M, Ishikawa N, Ishikawa T, Koshihara S, Kaizu Y. Static magnetic-field-induced phase lag in the magnetization response of tris(dipicolinato)lanthanides. Inorg Chem, 2006, 45: 1299–1304CrossRefGoogle Scholar
  22. 22.
    Sweet L E, Roy L E, Meng F, Hughbanks T. Ferromagnetic coupling in hexanuclear Gadolinium gadolinium clusters. J Am Chem Soc, 2006, 128: 10193–10201CrossRefGoogle Scholar
  23. 23.
    Roy L E, Hughbanks T. Magnetic coupling in dinuclear Gd complexes. J Am Chem Soc, 2006, 128: 568–575CrossRefGoogle Scholar
  24. 24.
    Liu S, Gelmini L, Rettig S J. Synthesis and characterization of lanthanide [Ln(L)]2 complexes of N4O3 amine phenol ligands with phenolate oxygen bridges: evidence for very weak magnetic exchange between lanthanide ions. J Am Chem Soc, 1992, 114: 6081–6087CrossRefGoogle Scholar
  25. 25.
    Costes J P, Dahan F, Dupuis A. Homo-(4f, 4f) and heterodimetallic (4f, 4f′) complexes. The first structurally characterized example of a heterodimetallic (Yb, La) complex (1′). Magnetic properties of 1′ and of a homodinuclear (Gd, Gd) analogue. Inorg Chem, 1998, 37: 153–155CrossRefGoogle Scholar
  26. 26.
    Costes J P, Clemente-Juan J M, Dahan F. Unprecedented ferromagnetic interaction in homobinuclear erbium and Gadolinium complexes: structural and magnetic studies. Angew Chem Int Ed, 2002, 41: 323–325CrossRefGoogle Scholar
  27. 27.
    Hatscher S T, Urland W. Unexpected appearance of molecular ferromagnetism in the ordinary acetate [{Gd(OAc)3(H2O)2 2]4H2O}. Angew Chem Int Ed, 2003, 42: 2862–2864CrossRefGoogle Scholar
  28. 28.
    Hou H, Li G, Li L, Zhu Y, Meng X, Fan Y. Synthesis, crystal structures, and magnetic properties of three novel ferrocenecarboxylato-bridged lanthanide dimers. Inorg Chem, 2003, 42: 428–435CrossRefGoogle Scholar
  29. 29.
    Gatteschi D, Sessoli R, Villain J. Molecular Nanomagnets. New York: Oxford University, 2006CrossRefGoogle Scholar
  30. 30.
    Zheng Y, Lan Y, Anson C E, Powell A K. Anionperturbed magnetic slow relaxation in planar Dy4 clusters. Inorg Chem, 2008, 47: 10813–10815CrossRefGoogle Scholar
  31. 31.
    Tang J, Hewitt I, Madhu N T, Chastanet G, Wernsdorfer W, Anson C E, Benelli C, Sessoli R, Powell A K. Dysprosium triangles showing single-molecule magnet behavior of thermally excited spin states. Angew Chem Int Ed, 2006, 45: 1729–1733CrossRefGoogle Scholar
  32. 32.
    Liu C, Hu H, Yang X. A practicable parameter describing magnetic interactions. Chem Phys Lett, 2001, 349: 89–94CrossRefGoogle Scholar
  33. 33.
    Bencini A, Benelli C, Caneschi A, Carlin R L, Dei A, Gatteschi D. Crystal and molecular structure of and magnetic coupling in two complexes containing Gadolinium(III) and copper(II) ions. J Am Chem Soc, 1985, 107: 8128–8136CrossRefGoogle Scholar
  34. 34.
    Koner R, Lee G, Wang Y, Wei H, Mohanta S. Two new diphenoxo-bridged discrete dinuclear CuIIGdIII compounds with cyclic diimino moieties: syntheses, structures, and magnetic properties. Eur J Inorg Chem, 2005, 1500–1505Google Scholar
  35. 35.
    Cirera J, Ruiz E. Exchange coupling in (CuGdIII)-Gd-II dinuclear complexes: A theoretical perspective. C R Chimie, 2008, 11: 1227–1134Google Scholar
  36. 36.
    Costes J P, Dahan F, Dupuis A, Laurent J P. Is ferromagnetism an intrinsic property of the CuII/GdIII couple? 1. Structures and magnetic properties of two novel dinuclear complexes with a μ-Phenolato-μ-Oximato (Cu,Gd) core. Inorg Chem, 2000, 39: 169–173CrossRefGoogle Scholar
  37. 37.
    Ramade I, Kahn O, Jeannin Y, Robert F. Design and magnetic properties of a magnetically isolated GdIIICuII pair. Crystal structures of [Gd(hfa)3Cu(salen)], [Y(hfa)3Cu(salen)], [Gd(hfa)3Cu(salen) (meim)], and [La(hfa)3(H2O)Cu(salen)] [hfa = hexafluoroacetylacetonato, salen = N,N′-ethylenebis(salicylideneaminato), meim = 1-methylimidazole]. Inorg Chem, 1997, 36: 930–936CrossRefGoogle Scholar
  38. 38.
    Sasaki M, Horiuchi H, Kumagai M, Sakamoto M, Sakiyama H, Nishida Y, Sadaoka Y, Ohba M, Okawa H. A novel discrete d-f heterobinuclear complex designed from tetrahedrally distorted [Cu(salabza)](H2salabza: N,N′-Bis(salicylidene)-2-aminobenzylamine) and [Gd(hfac)3]. Chem Lett, 1998, 911Google Scholar
  39. 39.
    Ryazanov M, Nikiforov V, Lloret F, Julve M, Kuzmina N, Gleizes A, Magnetically isolated CuIIGdIII pairs in the series [Cu(acacen)Gd(pta)3], [Cu(acacen)Gd(hfa)3], [Cu(salen)Gd(pta)3], and [Cu(salen)Gd(hfa)3], [acacen = N,N′-Ethylenebis(acetylacetoniminate(-)), salen = N,N′-ethylenebis(salicylideniminate(-)), hfa = 1,1,1,5,5,5-hexafluoropentane-2,4-dionate(-), pta = 1,1,1-trifluoro-5,5-dimethylhexane-2,4-dionate(-)]. Inorg Chem, 2002, 41: 1816–1823CrossRefGoogle Scholar
  40. 40.
    Margeat O, Lacroix P G, Costes J P, Donnadieu B, Lepetit C, Nakatani K. Synthesis, structures, and physical properties of copper(II)-Gadolinium(III) complexes combining ferromagnetic coupling and quadratic nonlinear optical properties. Inorg Chem, 2004, 43: 4743–4750CrossRefGoogle Scholar
  41. 41.
    Brewer C, Brewer G, Scheidt W R, Shang M, Carpenter E E, Synthesis and structural and magnetic characterization of discrete phenolato and imidazolate bridged Gd(III)-M(II) [M=Cu, Ni] dinuclear complexes. Inorg Chim Acta, 2001, 313: 65–70CrossRefGoogle Scholar
  42. 42.
    He F, Tong M, Chen X, Synthesis, structures, and magnetic properties of heteronuclear Cu(II)-Ln(III) (Ln = La, Gd, or Tb) complexes. Inorg Chem, 2005, 44: 8285–8292CrossRefGoogle Scholar
  43. 43.
    Atria A M, Moreno Y, Spodine E, Garland M T, Baggio R, A discrete dinuclear Cu(II) II -Gd(III) complex d III erived from a schiff base ligand, [CuGd(ems)(NO3)3H2O]Cu(ems) (ems: N,N′-ethylene-bis-5-methoxy salicylaldiimine). Inorg Chim Acta, 2002, 335: 1–6CrossRefGoogle Scholar
  44. 44.
    Kahn M L, Rajendiran T M, Jeannin Y, Mathoniere C, Kahn O. Ln(III)Cu(II) Schiff base compounds (Ln = Ce, Gd, Tb, Dy, Ho, Er): structural and magnetic properties. C R Acad Sci Ser IIc Chim, 2000, 3: 131–137Google Scholar
  45. 45.
    Costes J P, Dahan F, Dupuis A, Laurent J P. A general route to strictly dinuclear Cu(II)/Ln(III) complexes. structural determination and magnetic behavior of two Cu(II)/Gd(III) complexes. Inorg Chem, 1997, 36: 3429–3433Google Scholar
  46. 46.
    Costes J P, Dahan F, Novitchi G, Arion V, Shova S, Jpkowski L. Macrocyclic and open-chain CuII-4f (4f = GdIII, CeIII) complexes with planar diamino chains: structures and magnetic properties. Eur J Inorg Chem, 2004, 1530–1537Google Scholar
  47. 47.
    Novitchi G, Costes J P, Donnadieu B. Synthesis and structure of 1-D heterometallic thiocyanato-bridged CuIIGdIII polymers with ferromagnetic properties. Eur J Inorg Chem, 2004, 1808–1812Google Scholar
  48. 48.
    Kara H, Elerman Y, Prout K. Synthesis, crystal structure and magnetic properties of a novel GdIII-CuII heterodinuclear complex. Z Naturforsch Teil B: Chem Sci, 2000, 55: 1131–1136Google Scholar
  49. 49.
    Costes J P, Dahan F, Dupuis A, Laurent J P. A genuine example of a discrete bimetallic (Cu, Gd) complex: structural determination and magnetic properties. Inorg Chem, 1996, 35: 2400–2402CrossRefGoogle Scholar
  50. 50.
    Zeyrek C T, Elmali A, Elerman Y, Magnetic characterization, synthesis and crystal structure of a heterodinuclear CuIIGdIII Schiff base complex bridged by the two phenolic oxygen atoms. J Mol Struct, 2005, 740: 47–52CrossRefGoogle Scholar
  51. 51.
    Elmali A, Elerman Y. Magnetic properties and crystal structure of a CuIIGdIII heterodinuclear schiff base complex. Z Naturforsch Teil B Chem Sci, 2004, 59; 535–540Google Scholar
  52. 52.
    Akine S, Matsumoto T, Taniguchi T, Nabeshima T. Synthesis, structures, and magnetic properties of tri- and dinuclear Cop-per(II)-Gadolinium(III) complexes of linear oligooxime ligands. Inorg Chem, 2005, 44: 3270–3274CrossRefGoogle Scholar
  53. 53.
    Mohanta S, Lin H, Lee C, Wei H. A two-dimensional CuIIGdIII compound self-assembled by H-bonding and intermolecular weak coordinate bonding between the dinuclear cores: structure and magnetic properties. Inorg Chem Commun, 2002, 5: 585–588CrossRefGoogle Scholar
  54. 54.
    Costes J P, Novitchi G, Shova S, Dahan F, Donnadieu B, Tuchagues J P. Synthesis, structure, and magnetic properties of heterometallic dicyanamide-bridged Cu-Na and Cu-Gd one-dimensional polymers. Inorg Chem, 2004, 43: 7792–7799CrossRefGoogle Scholar
  55. 55.
    Costes J P, Dahan F, Dupuis A. Influence of anionic ligands (X) on the nature and magnetic properties of dinuclear LCuGdX3·nH2O complexes (LH2 standing for tetradentate schiff base ligands deriving from 2-hydroxy-3-methoxybenzaldehyde and X being Cl, N3C2, and CF3COO). Inorg Chem, 2000, 39: 165–168CrossRefGoogle Scholar
  56. 56.
    Benelli C, Caneschi A, Gatteschi D, Guillou O, Pardi L. Synthesis, crystal structure, and magnetic properties of tetranuclear complexes containing exchange-coupled dilanthanide-dicopper (lanthanide = Gadolinium, dysosium) species. Inorg Chem, 1990, 29: 1750–1755CrossRefGoogle Scholar
  57. 57.
    Benelli C, Caneschi A, Fabretti A C, Gatteschi D, Pardi L. Ferronetic coupling of Gadolinium(III) ions and nitronyl nitroxide radicals in an essentially isotropic way. Inorg Chem, 1990, 29: 4153–4155CrossRefGoogle Scholar
  58. 58.
    Andruh M, Ramade I, Codjovi E, Guillou O, Kahn O, Trombe J C. Crystal structure and magnetic properties of [Ln2Cu4] hexanuclear clusters (where Ln = trivalent lanthanide). Mechanism of the Gadonium(III)-copper(II) magnetic interaction. J Am Chem Soc, 1993, 115: 1822–1829CrossRefGoogle Scholar
  59. 59.
    Yan F, Chen Z D, Magnetic coupling constants and spin density maps for heterobinuclear complexes GdCu(OTf)3(bdmap)2(H2O)·THF, [Gd-(C4H7ON)4(H2O)3][Fe(CN)6]·2H2O, and [Gd(C4H7ON)4(H2O)3]-[Cr-(CN)6] ·2H2O: a density functional study. J Phys Chem A, 2000, 104: 6295–6300CrossRefGoogle Scholar
  60. 60.
    Paulovic J, Cimpoesu F, Ferbinteanu M, Hirao K. Mechanism of ferromagnetic coupling in copper(II)-Gadolinium(III) complexes. J Am Chem Soc, 2004, 126: 3321–3331CrossRefGoogle Scholar
  61. 61.
    Benelli C, Murrie M, Parsons S. Synthesis, structural and magnetic characterisation of a new Mn-Gd pivalate: preparation from a preformed hexanuclear cluster, J Chem Soc Dalton Trans, 1999, 4125–4126Google Scholar
  62. 62.
    Costes J P, Clemente-Juan J M, Dahan F. Dinuclear (FeII, GdIII) complexes deriving from hexadentate schiff bases: synthesis, structure, and mussbauer and magnetic properties. Inorg Chem, 2002, 41: 2886–2891CrossRefGoogle Scholar
  63. 63.
    Costes J P, Dahan F, Dupuis A, Laurent J P. An original family of heterodinuclear Co(II)-Ln(III) complexes: synthesis and magneto-structural study. C R Acad Sci Paris t.1 S’erie IIc, 1998, 1: 417–420Google Scholar
  64. 64.
    Costes J P, Dahan F, Dupuis A. Experimental evidence of a ferromagnetic ground state (S = 9/2) for a dinuclear Gd(III)-Ni(II) complex. Inorg Chem, 1997, 36: 4284–4286CrossRefGoogle Scholar
  65. 65.
    Chen Q, Luo Q, Zheng L. A study on the novel d-f heterodinuclear Gd(III)-Ni(II) cryptate: synthesis, crystal structure, and magnetic behavior. Inorg Chem, 2002, 41: 605–609CrossRefGoogle Scholar
  66. 66.
    Bayly S R, Xu Z, Patrick B O. d/f complexes with uniform coordination geometry: structural and magnetic properties of an LnNi2 core supported by a heptadentate amine phenol ligand. Inorg Chem, 2003, 42: 1576–1583CrossRefGoogle Scholar
  67. 67.
    Costes J P, Dupuis A, Laurent J P. An original heterodinuclear VO2+,Gd3+ complex with a nonet ground state. J Chem Soc Dalton Trans, 1998, 735–736Google Scholar
  68. 68.
    Costes J P, Dahan F, Donnadieu B. Versatility of the nature of the magnetic gadolinium(III)-vanadium(IV) interaction-structure and magnetic properties of two heterobinuclear [Gd, V(O)] complexes. Eur J Inorg Chem, 2001, 363–365Google Scholar
  69. 69.
    Kou H Z, Gao S, Li C. Characterization of a soluble molecular magnet: unusual magnetic behavior of cyano-bridged Gd(III)-Cr(III) complexes with one-dimensional and nanoscaled square structures. Inorg Chem, 2002, 41: 4756–4762CrossRefGoogle Scholar
  70. 70.
    Kou H Z, Gao S, Sun B. Metamagnetism of the first cyano-bridged two-dimensional brick-wall-like 4f-3d array. Chem Mater, 2001, 13: 1431–1433CrossRefGoogle Scholar
  71. 71.
    Yan B, Wang H, Chen Z D. A novel cyano-bridged one-dimensional chain complex: [Gd(bet)2(H2O)3Fe(CN)6]n (bet = betaine). Inorg Chem Commun, 2000, 3: 653–657CrossRefGoogle Scholar
  72. 72.
    Liu Q, Gao S, Li J, Zhou Q, Yu K, Ma B Q, Zhang S, Zhang X, Jin T Z. Structures and magnetism of two novel heptanuclear lanthanide-centered trigonal prismatic clusters: [LnCu63-OH)3(HL)2(L)4] (ClO4)2sd25H2O (Ln = La, Tb; H2L = Iminodiacetic Acid). Inorg Chem, 2000, 39: 2488–2492CrossRefGoogle Scholar
  73. 73.
    Kahn M L, Sutter J P, Golhen S. Systematic investigation of the nature of the coupling between a Ln(III) Ion (Ln = Ce(III) to Dy(III)) and its aminoxyl radical ligands. Structural and magnetic characteristics of a series of {Ln(organic radical)2} compounds and the related {Ln-(Nitrone)2} derivatives. J Am Chem Soc, 2000, 122: 3413–3421CrossRefGoogle Scholar
  74. 74.
    Sutter J P, Kahn M L, Kahn O. Conclusive demonstration of the ferromagnetic nature of the interaction between Holmium(III) and Aminoxyl radicals. Adv Mater, 1999, 11: 863–865CrossRefGoogle Scholar
  75. 75.
    Andruh M, Costes J P, Diaz C, Gao S. 3d–4f combined chemistry: synthetic strategies and magnetic properties. Inorg Chem, 2009, 48: 3342–3359CrossRefGoogle Scholar
  76. 76.
    Tanase S, Reedijk J. Chemistry and magnetism of cyanido-bridged d-f assemblies. Coord Chem Rev, 2006, 250: 2501–2510CrossRefGoogle Scholar
  77. 77.
    Shiga T, Okawa H, Kitagawa S, Ohba M. Stepwise synthesis and magnetic control of trimetallic magnets [Co2Ln(L)2(H2O)4][Cr(CN)6nH2O (Ln = La, Gd; H2L = 2,6-Di(acetoacetyl)pyridine) with 3-D pillared-layer structur. J Am Chem Soc, 2006, 128: 16426–16427CrossRefGoogle Scholar
  78. 78.
    Kou H Z, Zhou B, Gao S, Wang R. A 2D cyano- and oxamidato-bridged heterotrimetallic CrIII-CuII-GdIII complex. Angew Chem Int Ed, 2003, 42: 3288–3291CrossRefGoogle Scholar
  79. 79.
    Kou H Z, Zhou B, Wang R. Heterotrimetallic 4f–3d coordination polymers: synthesis, crystal structure, and magnetic properties. Inorg Chem, 2003, 42: 7658–7665CrossRefGoogle Scholar
  80. 80.
    Yan B, Chen Z D. The magnetochemistry of novel cyano-bridged complexes Ln(DMF)4(H2O)2Mn (CN)6·H2O (Ln = Tb, Dy, Er). Transition Metal Chemistry, 2001, 26: 287–289CrossRefGoogle Scholar
  81. 81.
    Osa S, Kido T, Matsumoto N, Re N, Pochaba A, Mrozinski J. A tetranuclear 3d–4f single molecule magnet: [CuIILTbIII(hfac)2]2. J Am Chem Soc, 2004, 126: 420–421CrossRefGoogle Scholar
  82. 82.
    Mori F, Nyui T, Ishida T, Nogami T, Choi K Y, Nojiri H. Oximate-bridged trinuclear Dy-Cu-Dy complex behaving as a single-molecule magnet and its mechanistic investigation. J Am Chem Soc, 2006, 128: 1440–1441CrossRefGoogle Scholar
  83. 83.
    Chen Z D, Zhao B, Cheng P, Zhao Z, Shi W, Song Y. A purely lanthanide-based complex exhibiting ferromagnetic coupling and slow magnetic relaxation behavior. Inorg Chem, 2009, 48: 3493–3495CrossRefGoogle Scholar
  84. 84.
    Ishikawa N, Sugita M, Ishikaw T, Koshihara S, Kaizu Y. Mononuclear lanthanide complexes with a long magnetization relaxation time at high temperatures: a new category of magnets at the single-molecular level. J Phys Chem B, 2004, 108: 11265–11271CrossRefGoogle Scholar
  85. 85.
    Price D J, Batten S R, Moubaraki B, Murray K S. Synthesis, structure and magnetism of a new manganese carboxylate cluster: [Mn16O16-(OMe)6(OAc)16(MeOH)3(H2O)3]·6H2O. Chem Commun, 2002, 762-763Google Scholar
  86. 86.
    Mereacre V M, Ako A M, Clérac R, Wernsdorfer W, Filoti G, Bartolomé J, Anson C E, Powell A K. A bell-shaped Mn11Gd2 single-molecule magnet. J Am Chem Soc, 2007, 129: 9248–9249CrossRefGoogle Scholar
  87. 87.
    Coulon C, Clérac R, Lecren L, Wernsdorfer W, Miyasaka H. Glauber dynamics in a single-chain magnet: From theory to real systems. Phys Rev B, 2004, 69: 132408CrossRefGoogle Scholar
  88. 88.
    Lecren L, Wernsdorfer W, Li Y, Roubeau O, Miyasaka H, Clérac R. Quantum tunneling and quantum phase interference in a [MnII 2MnIII 2] single-molecule magnet. J Am Chem Soc, 2005, 127: 11311–11317CrossRefGoogle Scholar
  89. 89.
    Chandrasekhar V, Pandian B M, Azhakar R, Vittal J J, Clérac R. Linear trinuclear mixed-metal CoII-GdIII-CoII single-molecule magnet: [L2Co2Gd][NO3]·2CHCl3 (LH3 = (S)P[N(Me)NCH-C6H3-2-OH-3-OMe]3). Inorg Chem, 2007, 46: 5140–5142CrossRefGoogle Scholar
  90. 90.
    Glauber R J. Photon correlations. Phys Rev Lett, 1963, 10: 84–86CrossRefGoogle Scholar
  91. 91.
    Caneschi A, Gatteschi D, Lalioti N, Sangregorio C, Sessoli R, Venturi G, Vindigni A, Rettori A, Pini M G, Novak M A. Cobalt(II)-nitronyl nitroxide chains as molecular magnetic nanowires. Angew Chem Int Ed, 2001, 40: 1760–1763CrossRefGoogle Scholar
  92. 92.
    Bogani L, Vindigni A, Sessoli R, Gatteschi D. Single chain magnets: where to from here? J Mater Chem, 2008, 18: 4750–4758CrossRefGoogle Scholar
  93. 93.
    Coulon C, Miyasaka H, Clérac R. Single-chain magnets: theoretical approach and experimental systems. Struct Bond, 2006, 122: 163–206CrossRefGoogle Scholar
  94. 94.
    Costes J P, Clemente-Juan J M, Dahan F, Milon F. Unprecedented (Cu2Ln)n complexes (Ln = Gd3+, Tb3+): a new “single chain magnet”. Inorg Chem, 2004, 43: 8200–8202CrossRefGoogle Scholar
  95. 95.
    Benelli C, Caneschi A, Gatteschi D. Magnetic properties of lanthanide complexes with nitronyl nitroxides. Inorg Chem, 1989, 28: 272–275CrossRefGoogle Scholar
  96. 96.
    Benelli C, Caneschi A, Gatteschi D. Gadolinium(III) complexes with pyridine-substituted nitronyl nitroxide radicals. Inorg Chem, 1992, 31: 741–746CrossRefGoogle Scholar
  97. 97.
    Lescop C, Belorizky E, Luneau D. Synthesis, structures, and magnetic properties of a series of lanthanum(III) and gadolinium(III) complexes with chelating benzimidazole-substituted nitronyl nitroxide free radicals. evidence for antiferromagnetic GdIII-radical interactions. Inorg Chem, 2002, 41: 3375–3384Google Scholar
  98. 98.
    Lescop C, Luneau D, Belorizky E. Unprecedented antiferromagnetic metal? ligand interactions in gadolinium?nitroxide derivatives. Inorg Chem, 1999, 38: 5472–5473CrossRefGoogle Scholar
  99. 99.
    Tsukuda T, Suzuky T, Kaizaki S. Synthesis, spectroscopic and mag netic properties of lanthanide(III) complexes with a chelated imino nitroxide radical. J Chem Soc Dalton Trans, 2002, 1721–1726Google Scholar
  100. 100.
    Caneschi A, Dei A, Gatteschi D. Antiferromagnetic coupling in a gadolinium(III) semiquinonato complex. Angew Chem Int Ed, 2000, 39: 246–248CrossRefGoogle Scholar
  101. 101.
    Dei A, Gatteschi D, Massa C A. Spontaneous symmetry breaking in the formation of a dinuclear gadolinium semiquinonato complex: synthesis, high-field epr studies, and magnetic properties. Chem Eur J, 2000, 6: 4580–4586CrossRefGoogle Scholar
  102. 102.
    Sutter J P, Kahn M L, Golhen S. Synthesis and magnetic behavior of rare-earth complexes with N,O-chelating nitronyl nitroxide triazole ligands: example of a [GdIII{Organic Radical}2] compound with an S = 9/2 ground state. Chem Eur J, 1998, 4: 571–576CrossRefGoogle Scholar
  103. 103.
    Raebiger J W, Miller J S. Magnetic ordering in the rare earth molecule-based magnets, Ln(TCNE)3 (Ln = Gd, Dy; TCNE = tetracyanoethylene). Inorg Chem, 2002, 41: 3308–3312CrossRefGoogle Scholar
  104. 104.
    Zhao H, Bazile M J, Galan-Mascaros J R. A rare-earth metal TCNQ magnet: synthesis, structure, and magnetic properties of {[Gd2(TCNQ)5-(H2O)9][Gd(TCNQ)4(H2O)3]}4H2O. Angew Chem Int Ed, 2003, 42: 1015–1018CrossRefGoogle Scholar
  105. 105.
    Benelli C, Caneschi A, Gatteschi D, Sessoli R. Magnetic ordering in a molecular material containing dysprosium(III) and a nitronyl nitroxide. Adv Mater, 1992, 4: 504–505CrossRefGoogle Scholar
  106. 106.
    Benelli C, Caneschi A, Gatteschi D, Sessoli R. Magnetic properties and phase transitions in molecular based materials containing rare earth ions and organic radicals (invited). J Appl Phys, 1993, 73: 5333–5337CrossRefGoogle Scholar
  107. 107.
    Bogani L, Sangregorio C, Sessoli R, Gatteschi D. Molecular engineering for single-chain-magnet behavior in a one-dimensional dysprosiumnitronyl nitroxide compound. Angew Chem Int Ed, 2005, 44: 5817–5821CrossRefGoogle Scholar
  108. 108.
    Katoh K, Yoshida Y, Yamashita M, Miyasaka H, Breedlove B K, Kajiwara T, Takaishi S, Ishikawa N, Isshiki H, Zhang Y Z, Komeda T, Yamagishi M, Takeya J. Direct observation of lanthanide(III)-phthalocyanine molecules on Au(III) by using scanning tunneling microscopy and scanning tunneling spectroscopy and thin-film field-effect transistor properties of Tb(III)- and Dy(III)-phthalocyanine molecules. J Am Chem Soc, 2009, 131: 9967–9976CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations