Science in China Series B: Chemistry

, Volume 52, Issue 10, pp 1559–1575

Photothermal ablation therapy for cancer based on metal nanostructures



Besides conventional surgery, radiation therapy, and chemotherapy, which all tend to have side-effects and damage normal tissues, new medical strategies, such as photothermal sensitization and photothermal ablation therapy (PTA) with near-IR laser light, have been explored for treating cancer. Much of the current excitement surrounding nanoscience is directly connected to the promise of new nanotechnology for cancer diagnosis and therapy. The basic principle behind PTA is that heat generated from light can be used to destroy cancer cells. Strong optical absorption and high efficiency of photothermal conversion at the cancer sites are critical to the success of PTA. Because of their unique optical properties, e.g., strong surface plasmon resonance (SPR) absorption, noble metal nanomaterials, such as gold and silver, have been found to significantly enhance photothermal conversion for PTA applications. Substantial effort has been made to develop metal nanostructures with optimal structural and photothermal properties. Ideal metal nanostructures should have strong and tunable SPR, be easy to deliver, have low toxicity, and be convenient for bioconjugation for actively targeting specific cancer cells. This review would highlight some gold nanostructures with various shapes and properties, including nanoparticles (NPs), nanorods (NRs), nanoshells, nanocages, and hollow nanospheres, which have been studied for PTA applications. Among these structures, hollow gold nanospheres (HGNs) exhibit arguably the best combined properties because of their small size (30–50 nm), spherical shape, and strong, narrow, and tunable SPR absorption.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Torshina N L, Posypanova A M, Volkova A I. New sensitizers and rapid monitoring of their photodynamic activity. SPIE Proc, 1996, 2675: 254–255CrossRefGoogle Scholar
  2. 2.
    Kalija O L, Meerovich G A, Torshina N L, Kogan E A, Loschenov V B, Lukyanets E A, Kogan B Y, Butenin A V, Vorozhtsov G N, Kuzmin S G, Volkova A I, Posypanova A M. Improvement of cancer PDT using sulphophthalocyanine and sodium ascorbate. SPIE Proc, 1997, 3191: 177–179CrossRefGoogle Scholar
  3. 3.
    Jacques S L, McAuliffe D J. The melanosome: the threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation. Photochem Photobiol, 1991, 53: 769–775Google Scholar
  4. 4.
    Lin C P, Kelly N W, Sibayan S A B, Latina M A, Anderson R R. Selective cell killing by microparticle absorption of pulsed laser radiation. IEEE J Sel Top Quant, 1999, 5(4): 963–968CrossRefGoogle Scholar
  5. 5.
    Lapotko D O, Lukianova E and Oraevsky A A. Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles. Laser Surg Med, 2006, 38(6): 631–642CrossRefGoogle Scholar
  6. 6.
    Gerstman B S, Thompson C R, Jacques S L, Rogers M E. Laser induced bubble formation in the retina. Laser Surg Med, 1996, 18(1): 10–21CrossRefGoogle Scholar
  7. 7.
    West J L, Halas N J. Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng, 2003, 5: 285–292CrossRefGoogle Scholar
  8. 8.
    Kogan B Y, Butenin A V, Torshina N L, Kogan E A, Kaliya O L, Lukyanets E A, Luzhkov Y M, Derkacheva V M, Pankratov A A, Vorozhtsov G N, Volkova A I. Aluminium sulphophthalocyanine as an NIR photosensitizer for PDT. SPIE, 1999Google Scholar
  9. 9.
    Meerovich G A, Torshina N L, Loschenov V B, Stratonnikov A A, Volkova A I, Vorozhtsov G N, Kaliya O L, Lukyanets E A, Kogan B Y, Butenin A V, Kogan E A, Gladskikh O P, Polyakova L N. Experimental study of PDT with aluminum sulphophthalocyanine using sodium ascorbate and hyperbaric oxygenation. SPIE, 1999Google Scholar
  10. 10.
    Dougherty T J. Photodynamic therapy for treatment of cancer. J Opt Soc Am B, 1984, 1(3): 555–555Google Scholar
  11. 11.
    Xue L Y, Chiu S M, Oleinick N L. Photodynamic therapy-induced death of MCF-7 human breast cancer cells: A role for caspase-3 in the late steps of apoptosis but not for the critical lethal event. Exp Cell Res, 2001, 263(1): 145–155CrossRefGoogle Scholar
  12. 12.
    Zuluaga M F, Lange N. Combination of photodynamic therapy with anti-cancer agents. Curr Med Chem, 2008, 15(17): 1655–1673CrossRefGoogle Scholar
  13. 13.
    Thomsen S. Pathological analysis of photothermal and photomechanical effects of laser-tissue interactions. Photochem Photobiol, 1991, 53(6): 825–835Google Scholar
  14. 14.
    Balogh L P, Tse C, Lesniak W, Ye J, O’Donnell M, Khan M K. Photomechanical therapy: destruction of nanocomposite labeled cells by laser induced optical breakdown. Nanomed-Nanotech Bio Med, 2007, 3(4): 350–350CrossRefGoogle Scholar
  15. 15.
    Hirsch L R, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Hazle J D, Halas N J, West J L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. P Natl Acad Sci USA, 2003, 100(23): 13549–13554CrossRefGoogle Scholar
  16. 16.
    Loo C, Lin A, Hirsch L, Lee M H, Barton J, Halas N, West J, Drezek R. Nanoshell-enabled photonics-based imaging and therapy of cancer. Tech Cancer Res Tr, 2004, 3(1): 33–40Google Scholar
  17. 17.
    ONeal D P, Hirsch L R, Halas N J, Payne J D, West J L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett, 2004, 209(2): 171–176CrossRefGoogle Scholar
  18. 18.
    Camerin M, Rello S, Villanueva A, Ping X Z, Kenney M E, Rodgers M A J, Jori G. Photothermal sensitisation as a novel therapeutic approach for tumours: Studies at the cellular and animal level. Eur J Cancer, 2005, 41(8): 1203–1212CrossRefGoogle Scholar
  19. 19.
    Gobin A M, Lee M H, Halas N J, James W D, Drezek R A, West J L. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett, 2007, 7(7): 1929–1934CrossRefGoogle Scholar
  20. 20.
    Ji X J, Shao R P, Elliott A M, Stafford R J, Esparza-Coss E, Bankson J A, Liang G, Luo Z P, Park K, Markert J T, Li C. Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both MR imaging and photothermal therapy. J Phys Chem C, 2007, 111(17): 6245–6251CrossRefGoogle Scholar
  21. 21.
    Skrabalak S E, Au L, Lu X M, Li X D, Xia Y N. Gold nanocages for cancer detection and treatment. Nanomedicine, 2007, 2(5): 657–668CrossRefGoogle Scholar
  22. 22.
    Huang X H, El-Sayed I H, Qian W, El-Sayed M A. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: A potential cancer diagnostic marker. Nano Lett, 2007, 7(6): 1591–1597CrossRefGoogle Scholar
  23. 23.
    Melancon M P, Lu W, Yang Z, Zhang R, Cheng Z, Elliot A M, Stafford J, Olson T, Zhang J Z, Li C. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Therapeut, 2008, 7(6): 1730–1739CrossRefGoogle Scholar
  24. 24.
    Lu W, Xiong C Y, Zhang G D, Huang Q, Zhang R, Zhang J Z, Li C. Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres. Clin Cancer Res, 2009, 15(3): 876–886CrossRefGoogle Scholar
  25. 25.
    Paltauf G, Dyer P E. Photomechanical processes and effects in ablation. Chem Rev, 2003, 103(2): 487–518CrossRefGoogle Scholar
  26. 26.
    Jain P K, Huang X H, El-Sayed I H, El-Sayed M A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts Chem Res, 2008, 41(12): 1578–1586CrossRefGoogle Scholar
  27. 27.
    Chakravarty P, Marches R, Zimmerman N S, Swafford A D E, Bajaj P, Musselman I H, Pantano P, Draper R K, Vitetta E S. Thermal ablation of tumor cells with anti body-functionalized single-walled carbon nanotubes. P Natl Acad Sci USA, 2008, 105(25): 8697–8702CrossRefGoogle Scholar
  28. 28.
    Arayne M S, Sultana N. Nanoparticles in drug delivery for the treatment of cancer. Pak J Pharm Sci, 19(3): 2006, 258–268Google Scholar
  29. 29.
    Ambrogi M C, Fontanini G, Cioni R, Faviana P, Fanucchi O, Mussi A. Biologic effects of radiofrequency thermal ablation on non-small cell lung cancer: Results of a pilot study. J Thorac Cardiov Sur, 2006, 131(5): 1002–1006CrossRefGoogle Scholar
  30. 30.
    Stern J M, Stanfield J, Kabbani W, Hsieh J T, Cadeddu J R A. Selective prostate cancer thermal ablation with laser activated gold nanoshells. J Urology, 2008, 179(2): 748–753CrossRefGoogle Scholar
  31. 31.
    Boaz T L, Lewin J S, Chung Y C, Duerk J L, Clampitt M E, Haaga J R. MR monitoring of MR-guided radiofrequency thermal ablation of normal liver in an animal model. J Magn Reson Imaging, 1998, 8(1): 64–69CrossRefGoogle Scholar
  32. 32.
    Nguyen C T, Campbell S C. Salvage of local recurrence after primary thermal ablation for small renal masses. Exp Rev Anticancer Ther, 2008, 8(12): 1899–1905CrossRefGoogle Scholar
  33. 33.
    Schwartzberg A M, Grant C D, van Buuren T, Zhang J Z. Reduction of HAuCl4 by Na2S revisited: The case for Au nanoparticle aggregates and against Au2S/Au Core/Shell particles. J Phys Chem C, 2007, 111(25): 8892–8901CrossRefGoogle Scholar
  34. 34.
    Schwartzberg A M, Zhang J Z. Novel optical properties and emerging applications of metal nanostructures. J Phys Chem C, 2008, 112: 10323–10337CrossRefGoogle Scholar
  35. 35.
    Zhang J Z, Noguez C. Plasmonic optical properties and applications of metal nanomaterials. Plasmonics, 2008, 3(4): 127–150CrossRefGoogle Scholar
  36. 36.
    Chithrani B D, Ghazani A A, Chan W C W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett, 2006, 6(4): 662–668CrossRefGoogle Scholar
  37. 37.
    Schwartzberg A M, Olson T Y, Talley C E, Zhang J Z. Synthesis, characterization, and tunable optical properties of hollow gold nanospheres. J Phys Chem B, 2006, 110(40): 19935–19944CrossRefGoogle Scholar
  38. 38.
    Bowler K, Laudien H, Laudien I. Cellular heat injury. J Therm Biol, 1983, 8(4): 426–430CrossRefGoogle Scholar
  39. 39.
    Bass H, Coakley W T, Moore J L, Tilley D. Hyperthermia-induced changes in the morphology of CHO-K1 and their refractile inclusions. J Therm Biol, 1982, 7(4): 231–242CrossRefGoogle Scholar
  40. 40.
    Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag P M. Hyperthermia in combined treatment of cancer. Lancet Oncol, 2002, 3(8): 487–497CrossRefGoogle Scholar
  41. 41.
    Tong L, Zhao Y, Huff T B, Hansen M N, Wei A, Cheng J X. Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv Mater, 2007, 19(20): 3136–3141CrossRefGoogle Scholar
  42. 42.
    Kotaidis V, Plech A. Cavitation dynamics on the nanoscale. Appl Phys Lett, 2005, 87(21): 213102–213104CrossRefGoogle Scholar
  43. 43.
    Zharov V P, Galitovskaya E N, Johnson C, Kelly T. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: Potential for cancer therapy. Laser Surg Med, 2005, 37(3): 219–226CrossRefGoogle Scholar
  44. 44.
    Letfullin R R, Joenathan C, George T F, Zharov V P. Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer. Nanomedicine, 2006, 1(4): 473–480CrossRefGoogle Scholar
  45. 45.
    Huang X, Qian W, El-Sayed I H, El-Sayed M A. The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Laser Surg Med, 2007, 39(9): 747–753CrossRefGoogle Scholar
  46. 46.
    Norman T J, Grant C D, Magana D, Zhang J Z, Liu J, Cao D L, Bridges F, van Buuren A. Near infrared optical absorption of gold nanoparticle aggregates. J Phys Chem B, 2002, 106(28): 7005–7012CrossRefGoogle Scholar
  47. 47.
    Grant C D, Schwartzberg A M, Norman T J, Zhang J Z. Ultrafast electronic relaxation and coherent vibrational oscillation of strongly coupled gold nanoparticle aggregates. J Am Chem Soc, 2003, 125(2): 549–553CrossRefGoogle Scholar
  48. 48.
    Akiyama Y, Mori T, Katayama Y, Miidome T. The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice. J Control Release, 2009, 139(1): 81–84CrossRefGoogle Scholar
  49. 49.
    Didychuk C L, Ephrat P, Chamson-Reig A, Jacques S L, Carson J J L. Depth of photothermal conversion of gold nanorods embedded in a tissue-like phantom. Nanotechnology, 2009, 20(19): 151102–151110CrossRefGoogle Scholar
  50. 50.
    Huang Y F, Sefah K, Bamrungsap S, Chang H T, Tan W. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods. Langmuir, 2008, 24(20): 11860–11865CrossRefGoogle Scholar
  51. 51.
    von Maltzahn G, Park J H, Agrawal A, Bandaru N K, Das S K, Sailor M J, Bhatia S N. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res, 2009, 69(9): 3892–3900CrossRefGoogle Scholar
  52. 52.
    Goodrich G P, Payne J D, Sharp K, Bao L, Sang K L. Efficacy of photothermal ablation using intravenously delivered NIR-absorbing nanorods in colon cancer. in Energy-based Treatment of Tissue and Assessment, SPIE, 2009Google Scholar
  53. 53.
    Huang X H, El-Sayed I H, Qian W, El-Sayed M A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc, 2006, 128(6): 2115–2120CrossRefGoogle Scholar
  54. 54.
    Wang C G, Chen J, Talavage T, Irudayaraj J. Gold nanorod/Fe3O4 nanoparticle “nano-pearl-necklaces” for simultaneous targeting, dual- mode imaging, and photothermal ablation of cancer cells. Angew Chem-Int Edit, 2009, 48(15): 2759–2763CrossRefGoogle Scholar
  55. 55.
    Lal S, Clare S E, Halas N J. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Accounts Chem Res, 2008, 41(12): 1842–1851CrossRefGoogle Scholar
  56. 56.
    Hao E, Li S Y, Bailey R C, Zou S L, Schatz G C, Hupp J T. Optical properties of metal nanoshells. J Phys Chem B, 2004, 108(4): 1224–1229CrossRefGoogle Scholar
  57. 57.
    Zhang J Z, Schwartzberg A M, Norman T, Grant C D, Liu J, Bridges F, van Buuren T. Comment on “gold nanoshells improve single nanoparticle molecular sensors”. Nano Lett, 2005, 5(4): 809–810CrossRefGoogle Scholar
  58. 58.
    Zhang J Z, Wang Z L, Liu J, Chen S, Liu G-y. Self-assembled Nanostructures. Nanoscale Science and Technology. New York: Kluwer Academic/Plenum Publishers, 2003. 316Google Scholar
  59. 59.
    Zhang J Z. Optical Properties and Spectroscopy of Nanomaterials. Singapore: World Scientific Publisher, 2009. 383Google Scholar
  60. 60.
    Schwartz J A, Shetty A M, Price R E, Stafford R J, Wang J C, Uthamanthil R K, Pham K, McNichols R J, Coleman C L, Payne J D. Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res, 2009, 69(4): 1659–1667CrossRefGoogle Scholar
  61. 61.
    Gobin A M, Moon J J and West J L. EphrinA1-targeted nanoshells for photothermal ablation of prostate cancer cells. Int J Nanomed, 2008, 3(3): 351–358Google Scholar
  62. 62.
    Lowery A R, Gobin A M, Day E S, Halas N J, West J L. Immunonanoshells for targeted photothermal ablation of tumor cells. Int J Nanomed, 2006, 1(2): 149–154CrossRefGoogle Scholar
  63. 63.
    Bernardi R J, Lowery A R, Thompson P A, Blaney S M, West J L. Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: an in vitro evaluation using human cell lines. J Neuro-Oncol, 2008, 86(2): 165–172CrossRefGoogle Scholar
  64. 64.
    Male K B, Lachance B, Hrapovic S, Sunahara G, Luong J H T. Assessment of cytotoxicity of quantum dots and gold nanoparticles using cell-based impedance spectroscopy. Anal Chem, 2008, 80(14): 5487–5493CrossRefGoogle Scholar
  65. 65.
    Hauck T S, Ghazani A A, Chan W C W. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small, 2008, 4(1): 153–159CrossRefGoogle Scholar
  66. 66.
    Parab H J, Chen H M, Lai T C, Huang J H, Chen P H, Liu R S, Hsiao M, Chen C H, Tsai D P, Hwu Y K. Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods. J Phys Chem C, 2009, 113(18): 7574–7578CrossRefGoogle Scholar
  67. 67.
    Alkilany A M, Nagaria P K, Hexel C R, Shaw T J, Murphy C J, Wyatt M D. Cellular uptake and cytotoxicity of gold nanorods: Molecular origin of cytotoxicity and surface effects. Small, 2009, 5(6): 701–708CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta CruzUSA

Personalised recommendations