Science in China Series B: Chemistry

, Volume 52, Issue 5, pp 552–558 | Cite as

Alkali-hydrolysis of D-glucono-delta-lactone studied by chiral Raman and circular dichroism spectroscopies

  • GuoQing Jia
  • Shi Qiu
  • GuanNa Li
  • Jun Zhou
  • ZhaoChi FengEmail author
  • Can LiEmail author


The alkali-hydrolysis of D-glucono-delta-lactone (GDL) was investigated by chiral Raman and circular dichroism (CD) spectroscopies in combination with density functional theory calculation. Based on the characteristic CD bands of GDL and its hydrolysis product, the dynamics of hydrolysis was studied using stopped-flow CD method. Using chiral Raman spectroscopy (CRS), the stereochemical change of GDL owing to the hydrolysis reaction was discussed on the vibrational scale. The CRS results show that the ring-opening due to hydrolysis has a great influence on the chiral structure around the carbonyl group, which was evidenced by the disappearance of the CRS band at 1735 cm 1 (C=O stretching vibrational mode). In addition, the change of positions and intensity of CRS bands was also observed, which was ascribed to the perturbation around the C2, C3, C4 and C5 carbons due to ring-opening. It is worthy to note that the stereochemistry of C2, C3, C4 and C5 had no fundamental change during the hydrolysis reaction, which was reflected in the maintenance of the signs of the CRS bands. Our results demonstrate that in comparison with CD technique, CRS may provide more detailed structural information of chiral molecules and open up new vistas of research for chiral reactions.


chiral Raman spectroscopy (CRS) circular dichroism (CD) stopped-flow D-glucono-delta-lactone (GDL) hydrolysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eisenberg F, Field J B. The enzymatic hydrolysis of glucuronolactone. J Biol Chem, 1956, 222: 293–300Google Scholar
  2. 2.
    Pocker Y, Green E. Hydrolysis of D-glucono-delta-lactone. I. General acid-base catalysis, solvent deuterium isotope effects, and transition state characterization. J Am Chem Soc, 1973, 95: 113–119CrossRefGoogle Scholar
  3. 3.
    Strecker H J, Korkes S. Glucose dehydrogenase. J Biol Chem, 1952, 196: 769–784Google Scholar
  4. 4.
    Dybowska B E, Fujio Y. Optical analysis of glucono-delta-lactone induced soy protein gelation. J Food Eng, 1998, 36: 123–133CrossRefGoogle Scholar
  5. 5.
    Schwertfeger M, Buchheim W. Coagulation of skim milk under high hydrostatic pressure with acidification by glucono-delta-lactone. Int Dairy J, 1999, 9: 487–492CrossRefGoogle Scholar
  6. 6.
    Arévalo M J, Avalos M, Babiano R, Cabanillas A, Cintas P, Jiménez J L, Palacios J C. Optically active sugar thioamides from delta-gluconolactone. Tetrahedron: Asymmetr, 2000, 11: 1985–1995CrossRefGoogle Scholar
  7. 7.
    Garésio F, Kardos N, Bonnevie C, Petit S, Luche J L D-gluconolactone as a precursor to new environmentally benign tensioactive agents. Green Chem, 2000, 2: 33–36CrossRefGoogle Scholar
  8. 8.
    Shing T K M, Cheng H M. Short syntheses of Gabosine I and Gabosine G from delta-D-gluconolactone. J Org Chem 2007, 72: 6610–6613CrossRefGoogle Scholar
  9. 9.
    Sawyer D T, Bagger J B. The lactone-acid-salt equilibria for D-glucono-delta-lactone and the hydrolysis kinetics for this lactone. J Am Chem So, 1959, 81: 5302–5306CrossRefGoogle Scholar
  10. 10.
    Polavarapu P L. Why is it important to simultaneously use more than one chiroptical spectroscopic method for determining the structures of chiral molecules? Chirality, 2008, 20: 664–672CrossRefGoogle Scholar
  11. 11.
    Nafie L A. Infrared and Raman vibrational optical activity: theoretical and experimental aspects. Annu Rev Phys Chem, 1997, 48: 357–386CrossRefGoogle Scholar
  12. 12.
    Allenmark S, Gawronski J. Determination of absolute configuration — an overview related to this special issue. Chirality, 2008, 20: 606–608CrossRefGoogle Scholar
  13. 13.
    Bell A F, Hecht L, Barron L D. Low-wavenumber vibrational Raman optical activity of carbohydrates. J Raman Spectrosc, 1993, 24: 633–635CrossRefGoogle Scholar
  14. 14.
    Barron L D, Zhu F, Hecht L, Tranter G E, Isaacs N W. Raman optical activity: An incisive probe of molecular chirality and biomolecular structure. J Mol Structure, 2007, 834–836: 7–16CrossRefGoogle Scholar
  15. 15.
    Macleod N A, Johannessen C, Hecht L, Barron L D, Simons J P. From the gas phase to aqueous solution: Vibrational spectroscopy, Raman optical activity and conformational structure of carbohydrates. Int J Mass Spectrom, 2006, 253: 193–200CrossRefGoogle Scholar
  16. 16.
    Zhu F, Isaacs N W, Hecht L, Tranter G E, Barron L D. Raman optical activity of proteins, carbohydrates and glycoproteins. Chirality, 2006, 18: 103–115CrossRefGoogle Scholar
  17. 17.
    Barron L D, Zhu F, Hecht L. Raman optical activity: An incisive probe of chirality, and of biomolecular structure and behaviour. Vib Spectrosc, 2006, 42: 15–24CrossRefGoogle Scholar
  18. 18.
    Zhu F J, Isaacs N W, Hecht L, Barron L D. Polypeptide and carbohydrate structure of an intact glycoprotein from Raman optical activity. J Am Chem Soc, 2005, 127: 6142–6143CrossRefGoogle Scholar
  19. 19.
    Barron L D, Hecht L, Blanch E W, Bell A F. Solution structure and dynamics of biomolecules from Raman optical activity. Pro Biophys Mol Bio, 2000, 73: 1–49CrossRefGoogle Scholar
  20. 20.
    Barron L D, Hecht L, Bell A F. Raman optical activity: An incisive new probe of the structure and dynamics of biomolecules. Sci Pro, 1998, 81: 17–34Google Scholar
  21. 21.
    Barron L D, Hecht L, Bell A F, Wilson G. Recent developments in Raman optical activity of biopolymers. Appl Spectrosc, 1996, 50: 619–629CrossRefGoogle Scholar
  22. 22.
    Bell A F, Hecht L, Barron L D. Disaccharide solution stereochemistry from vibrational Raman optical activity. J Am Chem Soc, 1994, 116: 5155–5161CrossRefGoogle Scholar
  23. 23.
    Bell A F, Ford S J, Hecht L, Wilson G, Barron L D. Vibrational Raman optical activity of glycoproteins. Int J Biol Macromol, 1994, 16: 277–278CrossRefGoogle Scholar
  24. 24.
    Bell A F, Barron L D, Hecht L. Vibrational Raman optical activity study of D-glucose. Carbohyd Resc, 1994, 257: 11–24CrossRefGoogle Scholar
  25. 25.
    Barron L D, Ford S J, Bell A F, Wilson G, Hecht L, Cooper A. Vibrational Raman optical activity of biopolymers. Faraday Discuss, 1994: 217–232Google Scholar
  26. 26.
    Wen Z Q, Barron L D, Hecht L. Vibrational Raman optical activity of monosaccharides. J Am Chem Soc, 1993, 115: 285–292CrossRefGoogle Scholar
  27. 27.
    Gaussian 03, Revision D.01, Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J AJr, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian, Inc., Wallingford CT, 2004Google Scholar
  28. 28.
    McCann D M, Stephens P J, Cheeseman J R. Determination of absolute configuration using density functional theory calculation of optical rotation: chiral alkanes. J Org Chem, 2004, 69: 8709–8717CrossRefGoogle Scholar
  29. 29.
    McCann D M, Stephens P J. Determination of absolute configuration using density functional theory calculations of optical rotation and electronic circular dichroism: chiral alkenes. J Org Chem, 2006, 71: 6074–6098CrossRefGoogle Scholar
  30. 30.
    Diedrich C, Grimme S. Systematic investigation of modern quantum chemical methods to predict electronic circular dichroism spectra. J Phys Chem A, 2003, 107: 2524–2539CrossRefGoogle Scholar
  31. 31.
    Hackert M L, Jacobson R A. The crystal and molecular structure of D-glucono-(1,5)-lactone. Acta Cryst, 1971, B27: 203–209Google Scholar
  32. 32.
    Listowsky I, Englard S. Characterization of the far ultraviolet optically active absorption bands of sugars by circular dichroism. Biochem Biophys Res Commun, 1968, 30: 329–332CrossRefGoogle Scholar
  33. 33.
    Izumi H, Futamura S, Nafie L A, Dukor R K. Determination of molecular stereochemistry using vibrational circular dichroism spectroscopy: Absolute configuration and solution conformation of 5-formyl-cis,cis-1,3,5-trimethyl-3-hydroxymethylcyclohexane-1-car boxylic acid lactone. Chem Rec, 2003, 3: 112–119CrossRefGoogle Scholar
  34. 34.
    Bell A F, Hecht L, Barron L D. Vibrational Raman optical activity of ketose monosaccharides. Spectrochim Acta A Mol Biomol Spectrosc, 1995, 51: 1367–1378CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations