Science in China Series B: Chemistry

, Volume 52, Issue 3, pp 372–380

Molecular dynamics simulation of complex multiphase flow on a computer cluster with GPUs

  • FeiGuo Chen
  • Wei Ge
  • JingHai Li
Article

Abstract

Compute Unified Device Architecture (CUDA) was used to design and implement molecular dynamics (MD) simulations on graphics processing units (GPU). With an NVIDIA Tesla C870, a 20–60 fold speedup over that of one core of the Intel Xeon 5430 CPU was achieved, reaching up to 150 Gflops. MD simulation of cavity flow and particle-bubble interaction in liquid was implemented on multiple GPUs using a message passing interface (MPI). Up to 200 GPUs were tested on a special network topology, which achieves good scalability. The capability of GPU clusters for large-scale molecular dynamics simulation of meso-scale flow behavior was, therefore, uncovered.

Keywords

multiphase flow molecular dynamics CUDA GPU parallel computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alder B J, Wainwright T. Molecular dynamics by electronic computers. In: Prigogine I, ed. Proceeding of International Symposium on Transport Processes in Statistical Mechanics, Brussels. New York: Interscience, Wiley, 1956, 97–131Google Scholar
  2. 2.
    Moore G E. Cramming more components onto integrated circuits. Electronics, 1965, 38(8): 114–117Google Scholar
  3. 3.
    NVIDIA. NVIDIA CUDA Compute Unified Device Architecture Programming Guide Version 2.0. 2008.Google Scholar
  4. 4.
    Belleman R G, Bédorf J, Zwart S F P. High performance direct gravitational N-body simulations on graphics processing units II: An implementation in CUDA. New Astron, 2008, 13(2): 103–112CrossRefGoogle Scholar
  5. 5.
    Tölke J. Implementation of a Lattice Boltzmann kernel using the Compute Unified Device Architecture developed by nVIDIA. Comp Vis Sci, 2008, DOI: 10.1007/s00791-008-0120-2Google Scholar
  6. 6.
    van Meel J A, Arnold A, Frenkel D, Zwart S F P, Belleman R G. Harvesting graphics power for MD simulations. Mol Simulat, 2008, 34(3): 259–266CrossRefGoogle Scholar
  7. 7.
    Anderson J A, Lorenz C D, Travesset A. General purpose molecular dynamics simulations fully implemented on graphics processing units. J Comp Phys, 2008, 227(10): 5342–5359CrossRefGoogle Scholar
  8. 8.
    Liem S Y, Brown D, Clarke J H R. Investigation of the homogeneous-shear nonequilibrium-molecular-dynamics method. Phys Rev A, 1992, 45(6): 3706–3713CrossRefGoogle Scholar
  9. 9.
    Frenkel D, Smit B. Understanding Molecular Simulation: From Algorithms to Applications. Orlando: Academic Press, 1996. 443Google Scholar
  10. 10.
    Shankar P N, Deshpande M D. Fluid mechanics in the driven cavity. Annu Rev Fluid Mech, 2000, 32(1): 93–136CrossRefGoogle Scholar
  11. 11.
    Albensoeder S, Kuhlmann H C. Accurate three-dimensional lid-driven cavity flow. J Comput Phys, 2005, 206(2): 536–558CrossRefGoogle Scholar
  12. 12.
    Hou S, Zou Q, Chen S, Doolen G, Cogley A C. Simulation of cavity flow by the Lattice Boltzmann method. J Comput Phys, 1995, 118(2): 329–347CrossRefGoogle Scholar
  13. 13.
    Nie X, Robbins M O, Chen S. Resolving singular forces in cavity flow: Multiscale modeling from atomic to millimeter scales. Phys Rev Lett, 2006, 96(13): 134501–134504CrossRefGoogle Scholar
  14. 14.
    Qian T, Wang X-P. Driven cavity flow: from molecular dynamics to continuum hydrodynamics. Multiscale Model Simul, 2005, 3(4): 749–763CrossRefGoogle Scholar
  15. 15.
    Koplik J, Banavar J R. Corner flow in the sliding plate problem. Phys Fluids, 1995, 7(12): 3118–3125CrossRefGoogle Scholar
  16. 16.
    Gogotsi Y, Libera J A, Guvenc-Yazicioglu A, Megaridis C M. In situ multiphase fluid experiments in hydrothermal carbon nanotubes. Appl Phys Lett, 2001, 79(7): 1021–1023CrossRefGoogle Scholar
  17. 17.
    Sushko N, Cieplak M. Motion of grains, droplets, and bubbles in fluid-filled nanopores. Phys Rev E, 2001, 64(21): 021061–0210618Google Scholar
  18. 18.
    Chen F, Ge W, Wang L, Li J. Numerical study on gas-liquid nano-flows with pseudo-particle modeling and soft-particle molecular dynamics simulation. Microfluid Nanofluid, 2008, 5(5): 639–653Google Scholar
  19. 19.
    Matsumoto M, Matsuura T. Molecular dynamics simulation of a rising bubble. Mol Simulat, 2004, 30(13-15): 853–859CrossRefGoogle Scholar
  20. 20.
    Matsumoto M, Tanaka K. Nano bubble—Size dependence of surface tension and inside pressure. Fluid Dynam Res, 2008, 40(7-8): 546–553CrossRefGoogle Scholar
  21. 21.
    Nagayama G, Tsuruta T, Cheng P. Molecular dynamics simulation on bubble formation in a nanochannel. Int J Heat Mass Tran, 2006, 49(23-24): 4437–4443CrossRefGoogle Scholar
  22. 22.
    Park S H, Weng J G, Tien C L. A molecular dynamics study on surface tension of microbubbles. Int J Heat Mass Tran, 2001, 44(10): 1849–1856CrossRefGoogle Scholar
  23. 23.
    Nguyen A V, Evans G M. Attachment interaction between air bubbles and particles in froth flotation. Exp Therm Fluid Sci, 2004, 28(5): 381–385CrossRefGoogle Scholar
  24. 24.
    Omota F, Dimian A C, Bliek A. Adhesion of solid particles to gas bubbles. Part 2: Experimental. Chem Eng Sci, 2006, 61(2): 835–844CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • FeiGuo Chen
    • 1
    • 2
  • Wei Ge
    • 1
  • JingHai Li
    • 1
  1. 1.State Key Laboratory of Multi-Phase Complex Systems, Institute of Process EngineeringChinese Academy of SciencesBeijingChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations