Advertisement

Science in China Series B: Chemistry

, Volume 52, Issue 2, pp 137–143 | Cite as

Effects of charge distribution on water filling process in carbon nanotube

  • LingYi Meng
  • QiKai LiEmail author
  • ZhiGang Shuai
Article

Abstract

Using umbrella sampling technique with molecular dynamics simulation, we investigated the nanofluidic transport of water in carbon nanotube (CNT). The simulations showed that a positive charge modification to the carbon nanotube can slow down the water column growth process, while the negative charge modification to the carbon nanotube will, on the other hand, quicken the water column growth process. The free energy curves were obtained through the statistical process of water column growth under different charge distributions, and the results indicated that these free energy curves can be employed to explain the dynamical process of water column growth in the nanosized channels.

Keywords

nanotube micro/nanofluidic molecular dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhu F, Schulten K. Water and proton conduction through carbon nanotubes as models for biological channels. Biophys J, 2003, 85: 236–244CrossRefGoogle Scholar
  2. 2.
    Kalra A, Garde S, Hummer G. Osmotic water transport through carbon nanotube membranes. Proc Natl Acad Sci, 2003, 100: 10175–10180CrossRefGoogle Scholar
  3. 3.
    Corry B. Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B, 2008, 112: 1427–1434CrossRefGoogle Scholar
  4. 4.
    Preston GM, Carroll TP, Guggino WB, Agre P. Appearance of water channels in xenopus oocytes expressing red cell CHIP28 protein. Science, 1992, 256: 385–387CrossRefGoogle Scholar
  5. 5.
    O’Connell M J, Bachilo S M, Huffman C B, Moore V C, Strano M S, Haroz E H, Rialon K L, Boul P J, Noon W H, Kittrell C, Ma J, Hauge R H, Weisman R B, Smalley R E. Band gap fluorescence from individual single-walled carbon nanotubes. Science, 2002, 297: 593–596CrossRefGoogle Scholar
  6. 6.
    Miller S A, Young V Y, Martin C R. Electroosmotic flow in template-prepared carbon nanotube membranes. J Am Chem Soc, 2001, 123: 12335–12342CrossRefGoogle Scholar
  7. 7.
    Huanga B, Xia Y, Zhao M, Li F, Liu X, Ji Y, Song C. Distribution patterns and controllable transport of water inside and outside charged single-walled carbon nanotubes. J Chem Phys, 2005, 122: 084708CrossRefGoogle Scholar
  8. 8.
    Zimmerli U, Gonnet P G, Walther J H, Koumoutsakos P. Curvature induced L-defects in water conduction in carbon nanotubes. Nano Lett, 2005, 5: 1017–1022CrossRefGoogle Scholar
  9. 9.
    Truskett T M, Debenedetti P G, Torquato S. Thermodynamic implications of confinement for a waterlike fluid. J Chem Phys, 2001, 114: 2401–2418CrossRefGoogle Scholar
  10. 10.
    Brovchenko I, Alfons Geiger, Oleinikova A. Water in nanopores: II. The liquid-vapour phase transition near hydrophobic surfaces. J Phys: Condens Matter, 2004, 16: S5345–S5370Google Scholar
  11. 11.
    Galloa P, Rovere M, Spohr E. Glass transition and layering effects in confined water: A computer simulation study. J Chem Phys, 2000, 113: 11324–11335CrossRefGoogle Scholar
  12. 12.
    Gordillo M C, Martí J. High temperature behavior of water inside flat graphite nanochannels. Phys Rev B, 2007, 75: 085406CrossRefGoogle Scholar
  13. 13.
    Hummer G, Rasaiah J C, Noworyta J P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 2001, 414: 188–190CrossRefGoogle Scholar
  14. 14.
    Koga K, Gao G T, Tanaka H, Zeng X C. Formation of ordered ice nanotubes inside carbon nanotubes. Nature, 2001, 412: 802–805CrossRefGoogle Scholar
  15. 15.
    Takaiwa D, Hatano I, Koga K, Tanaka H. Phase diagram of water in carbon nanotubes. Proc Natl Acad Sci, 2008, 105: 39–43CrossRefGoogle Scholar
  16. 16.
    Striolo A. The mechanism of water diffusion in narrow carbon nanotubes. Nano Lett, 2006, 6: 633–639CrossRefGoogle Scholar
  17. 17.
    Gordillo M C, Marti J. Hydrogen bond structure of liquid water confined in nanotubes. Chem Phys Lett, 2000, 329: 341–345CrossRefGoogle Scholar
  18. 18.
    Walther J H, Jaffe R, Halicioglu T, Koumoutsakos P. Carbon nanotubes in water: structural characteristics and energetics. J Phys Chem B, 2001, 105: 9980–9987CrossRefGoogle Scholar
  19. 19.
    Meng L, Li Q, Shuai Z. Effects of size constraint on water filling process in nanotube. J Chem Phys, 2008, 128: 134703CrossRefGoogle Scholar
  20. 20.
    Noon W H, Ausman K D, Smalley R E, Ma J. Helical ice-sheets inside carbon nanotubes in the physiological condition. Chem Phys Lett, 2002, 355: 445–448CrossRefGoogle Scholar
  21. 21.
    Hanasakia I, Nakatanib A. Hydrogen bond dynamics and microscopic structure of confined water inside carbon nanotubes. J Chem Phys, 2006, 124: 174714CrossRefGoogle Scholar
  22. 22.
    Werder T, Walther J H, Jaffe R L, Halicioglu T, Noca F, Koumoutsakos P. Molecular dynamics simulation of contact angles of water droplets in carbon nanotubes. Nano Lett, 2001, 1: 697–702CrossRefGoogle Scholar
  23. 23.
    Vaitheeswaran S, Yin H, Rasaiah J C, Hummer G. Water clusters in nonpolar cavities. Proc Natl Acad Sci, 2004, 101: 17002–17005CrossRefGoogle Scholar
  24. 24.
    Kutana A, Giapis K P. Atomistic simulations of electrowetting in carbon nanotubes. Nano Lett, 2006, 6: 656–661CrossRefGoogle Scholar
  25. 25.
    Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D. A Super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew Chem Int Ed, 2004, 43: 2012–2014CrossRefGoogle Scholar
  26. 26.
    Feng X, Zhai J, Jiang L. The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angew Chem Int Ed, 2005, 44: 5115–5118CrossRefGoogle Scholar
  27. 27.
    Jiang L, Zhao Y, Zhai J. A lotus-leaf-like superhydrophobic surface: A porous microsphere/nanofiber composite film prepared by electro-hydrodynamics. Angew Chem Int Ed, 2004, 43: 4338–4341CrossRefGoogle Scholar
  28. 28.
    Wang S, Feng X, Yao J, Jiang L. Controlling wettability and photochromism in a dual-responsive tungsten oxide film. Angew Chem Int Ed, 2006, 45: 1264–1267CrossRefGoogle Scholar
  29. 29.
    Leach A R. Molecular Modelling: Principles and Applications. 2nd ed. Upper Saddle River: Prentice-Hall, 2001Google Scholar
  30. 30.
    Kosztin I, Barz B, Janosi L. Calculating potentials of mean force and diffusion coefficients from nonequilibrium processes without Jarzynski’s equality. J Chem Phys, 2006, 124: 064106CrossRefGoogle Scholar
  31. 31.
    Torrie G M, Valleau J P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J Comp Phys, 1977, 23: 187–199CrossRefGoogle Scholar
  32. 32.
    Wan R, Li J, Lu H, Fang H. Controllable water channel gating of nanometer dimensions. J Am Chem Soc, 2005, 127: 7166–7170CrossRefGoogle Scholar
  33. 33.
    Lindahl E, Hess B, van der Spoel D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Mod, 2001, 7: 306–317Google Scholar
  34. 34.
    van der Spoel D, Lindahl E, Hess B, van Buuren AR, Apol E, Meulenhoff PJ, Tieleman D P, Sijbers A, Feenstra K A, Drunen R V, Berendsen H. Gromacs User Manual. version 3.3 ed. 2005Google Scholar
  35. 35.
    Darden T, York D, Pedersen L. Particle mesh Ewald: An W log(N) method for Ewald sums in large systems. J Chem Phys, 1993, 98: 10089–10092CrossRefGoogle Scholar
  36. 36.
    Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G. A smooth particle mesh Ewald method. J Chem Phys, 1995, 103: 8577–8593CrossRefGoogle Scholar
  37. 37.
    Frisch M J, Trucks G W, Schlegel H B, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople J A. Gaussian 03. Revision E.01 ed. Pittsburgh PA: Gaussian, Inc. 2007Google Scholar
  38. 38.
    Won C Y, Joseph S, Alurua N R. Effect of quantum partial charges on the structure and dynamics of water in single-walled carbon nanotubes. J Chem Phys, 2006, 125: 114701CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular Sciences and Key Laboratory of Organic Solids, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations