Advertisement

Science in China Series B: Chemistry

, Volume 51, Issue 11, pp 1021–1029 | Cite as

Cytotoxicity of carbon nanotubes

  • Ying Zhu
  • WenXin LiEmail author
Article

Abstract

With large-scale production and application at large scale, carbon nanotubes (CNTs) may cause adverse response to the environment and human health. Thus, study on bio-effects and safety of CNTs has attracted great attention from scientists and governments worldwide. This report briefly summarizes the main results from the in vitro toxicity study of CNTs. The emphasis is placed on the description of a variety of factors affecting CNTs cytotoxicity, including species of CNTs, impurities contained, lengths of CNTs, aspect ratios, chemical modification, and assaying methods of cytotoxicity. However, experimental information obtained thus far on CNTs’ cytotoxicity is lacking in comparability, and sometimes there is controversy about it. In order to assess more accurately the potential risks of CNTs to human health, we suggest that care should be taken for issues such as chemical modification and quantitative characterization of CNTs in cytotoxicity assessment. More importantly, studies on physical and chemical mechanisms of CNTs’ cytotoxicity should be strengthened; assaying methods and evaluating criteria characterized by nanotoxicology should be gradually established.

Keywords

carbon nanotubes (CNTs) cell bio-security 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56–58CrossRefGoogle Scholar
  2. 2.
    ISI. An interview with Dr. Richard Smalley. Nanotechnology, ISI Essential Science Indicators Special Topics, March 2002. http://www.esi-topics.com/nano/interviews/Richard-Smalley.html
  3. 3.
    Oberdörster G. Oberdörster Eva, Oberdörster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Persp, 2005, 113: 823–839CrossRefGoogle Scholar
  4. 4.
    Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science, 2006, 311: 622–627CrossRefGoogle Scholar
  5. 5.
    Smart S K, Cassady A I, Lu G Q, Martin D J. The biocompatibility of carbon nanotubes. Carbon, 2006, 44: 1034–1047CrossRefGoogle Scholar
  6. 6.
    Hurt R H, Monthioux M, Kane A. Toxicology of carbon nanomaterials: status, trends, and perspectives on the special issue. Carbon, 2006, 44: 1028–1033CrossRefGoogle Scholar
  7. 7.
    Zhao Y L, Nalwa H S. Nanotoxicology. Valencia: American Scientific Publishers, 2007Google Scholar
  8. 8.
    Wang B, Feng W Y, Zhao Y L, Xing G M, Chai Z F, Wang H F, Jia G. Status of study on biological and toxicological effects of nanoscale materials. Sci Chin Ser B: Chem, 2005, 35: 1–10Google Scholar
  9. 9.
    Wang X, Yan L, Jia G, Wang S. Status of study on potential health effects of nanomaterials. J Health Toxic, 2005, 19(1): 15–17Google Scholar
  10. 10.
    Zhao Y L, Chai Z F. Status of study of bio-environmental activities of nanoscale materials. Bull Chin Acad Sci, 2005, 20(3): 194–199Google Scholar
  11. 11.
    Ren H X. The man-made nanomaterials security research progress and existence problem. Chin J Nat, 2007, 29(5): 270–272Google Scholar
  12. 12.
    Liu Y, Gao Y X, Wu G, Chen C Y. Status of study on biological and toxicological effects of typical nanoscale materials. Chin J Prev Med, 2007, 41(2): 130–133Google Scholar
  13. 13.
    Teeguarden J G, Hinderliter P M, Orr G, Brian D T, Joel G P. Particokinetics in vitro: Dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci, 2007, 95: 300–312CrossRefGoogle Scholar
  14. 14.
    Jia G, Wang H F, Lei Y, Wang X, Pei R J, Yan T, Zhao Y L, Guo X B. Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol, 2005, 39: 1378–1383CrossRefGoogle Scholar
  15. 15.
    Fiorito S, Serafino A, Andreola F, Bernier P. Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages. Carbon, 2006, 44: 1100–1105CrossRefGoogle Scholar
  16. 16.
    Shvedova A A, Castranova V, Kisin E R, Schwegler-Berry D, Murray A R, Gandelsman V Z, Maynard A, Baron P. Exposure to carbon nanotube material: Assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Env Health Part A, 2003, 66: 1909–1926CrossRefGoogle Scholar
  17. 17.
    Zhu Y, Zhao Q F, Li Y G, Cai X Q, Li W X. The interaction and toxicity of multi-walled carbon nanotubes with Stylonychia Mytilus. J Nanosci Nanotechnol, 2006, 6: 1357–1364CrossRefGoogle Scholar
  18. 18.
    Monteiro-Riviere N A, Nemanich A R J, Inman A O, Wang Y Y, Riviere J E. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett, 2005, 155: 377–384CrossRefGoogle Scholar
  19. 19.
    Isobe H, Tanaka T, Maeda R, Noiri E, Solin N, Yudasaka M, Iijima S, Nakamura E. Preparation, purification, characterization, and cytotoxicity assessment of water-soluble, transition-metal-free carbon nanotube aggregate. Angew Chem Int Ed, 2006, 45: 6676–6680CrossRefGoogle Scholar
  20. 20.
    Sato Y, Yokoyama A, Shibata K, Akimoto Y, Ogino S, Nodasaka Y, Kohgo T, Tamura K, Akasaka T, Uo M, Motomiya K, Jeyadevan B, Ishiguro M, Hatakeyama R, Watari F, Tohji K. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol BioSyst. 2005, 1: 176–182CrossRefGoogle Scholar
  21. 21.
    Bai R, Wang W, Jin X L, Song W H. Review on biological security of nanomaterials. J Environ Health, 2007, 24(1): 59–61Google Scholar
  22. 22.
    Magrez A, Kasas S, Salicio V, Pasquier N, Seo J W, Celio M, Catsicas S, Schwaller B, Forró L. Cellular toxicity of carbon-based nanomaterials. Nano Lett, 2006, 6: 1121–1125CrossRefGoogle Scholar
  23. 23.
    Zhu Y, Li W X, Li Y L, Li Q N, Li Y G, Huang Q. Effects of noncovalent interactions on carbon-based nanomaterials in culture medium on cytotoxicity. JACS, submittedGoogle Scholar
  24. 24.
    Muller J, Huaux F, Moreau N, Misson P, Heilier J F, Delos M, Arras M, Fonseca A, Nagy J B, Lison D. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol App Pharmacol, 2005, 207: 221–231Google Scholar
  25. 25.
    Kam N W S, Jessop T C, Wender P A, Dai H J. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc, 2004, 126: 6850–6851CrossRefGoogle Scholar
  26. 26.
    Kam N W S, Dai H J. Carbon nanotubes as intracellular protein transporters: Generality and biological functionality. J Am Chem Soc, 2005, 127: 6021–6026CrossRefGoogle Scholar
  27. 27.
    Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, Briand J, Prato M, Muller S, Bianco A. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano lett, 2006, 6: 1522–1528CrossRefGoogle Scholar
  28. 28.
    Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett, 2006, 160: 121–126CrossRefGoogle Scholar
  29. 29.
    Wörle-Knirsch J M, Pulskamp K, Krug H F. Oops they did it again! carbon nanotubes hoax scientists in viability assays. Nano Lett, 2006, 6: 1261–1268CrossRefGoogle Scholar
  30. 30.
    Cui D, Tian F, Ozkan C S, Wang M, Gao H J. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett, 2005, 155: 73–85CrossRefGoogle Scholar
  31. 31.
    Tamura K, Takashi N, Akasaka T, Roska I D, Uo M, Totsuka Y, Watari F. Effects of micro/nano particle size on cell function and morphology. Key Eng Mater, 2004, 254: 919–922CrossRefGoogle Scholar
  32. 32.
    Guo J X, Li Y G, Wu S W, Li W X. The effects of gamma-irradiation dose on chemical modification of multi-walled carbon nanotubes. Nanotechnology, 2005, 16: 2385–2388CrossRefGoogle Scholar
  33. 33.
    Guo J X. Chemical modification of carbon nanotubes and toxicity of functional carbon nanotubes. Dissertation for the Doctoral Degree. Shanghai: Shanghai Institute of Applied Physics, CAS, 2006. 80–96Google Scholar
  34. 34.
    Sayes C M, Liang F, Hudson J L, Mendez J, Guo W, Beach J M, Moore V C, Doyle C D, West J L, Billups W E, Ausman K D, Colvin V L. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett, 2006, 161: 135–142CrossRefGoogle Scholar
  35. 35.
    Zhu Y, Ran T C, Li Y G, Guo J X, Li W X. Dependence of multi-walled carbon nanotubes cytotoxicity on culture medium. Nanotechnology, 2006, 17: 4668–4674CrossRefGoogle Scholar
  36. 36.
    Chun A L, Food for thought, Nature Nanotechnol, 2006, 1: 12–13CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Laboratory of Nano-biology and Medicine, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.Graduate School of Chinese Academy of SciencesBeijingChina

Personalised recommendations