Science in China Series B: Chemistry

, Volume 51, Issue 10, pp 901–910

Surface glycosylation of polymeric membranes



Surface glycosylation of polymeric membranes has been inspired by the structure of natural biomembranes. It refers to that glycosyl groups are introduced onto the membrane surface by various strategies, which combine the separation function of the membrane with the biological function of the saccharides in one system. In this review, progress in the surface glycosylation of polymeric membranes is highlighted in two aspects, i.e. the glycosylation methods and the potential applications of the surface-glycosylated membranes.


membrane surface glycosylation enzyme immobilization protein recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    He X W, Huang Q, Fu X, Luo X F, Luo Z G. Functional Material of Carbohydrate (in Chinese). Beijing: China Light Industry Press, 2007. 1–6Google Scholar
  2. 2.
    Holland N B, Qiu Y, Ruegsegger M, Marchant R E. Biomimetic engineering of non-adhesive glycocalyx-like surfaces using oligosaccharide surfactant polymers. Nature, 1998, 392(6678): 799–801CrossRefGoogle Scholar
  3. 3.
    Rademacher T W, Parekh R B, Dwek R A. Glycobiology. Annu Rev Biochem, 1988, 57(1): 785–838CrossRefGoogle Scholar
  4. 4.
    Stanley P. Glycosylation engineering. Glycobiology, 1992, 2(2): 99–107CrossRefGoogle Scholar
  5. 5.
    Rene R, Francois D T, Anna R. New strategy in glycopolymer syntheses. Preparation of antigenic water-soluble poly(acrylamide-co-p-acrylamidophenyl beta-lactoside). Bioconjugate Chem, 1992, 3(3): 256–261CrossRefGoogle Scholar
  6. 6.
    David A, Kopeckova P, Kopecek J, Rubinstein A. The role of galactose, lactose, and galactose valency in the biorecognition of N-(2-hydroxypropyl)methacrylamide copolymers by human colon adenocarcinoma cells. Pharm Res, 2002, 19(8): 1114–1122CrossRefGoogle Scholar
  7. 7.
    Palomino E, Carbohydrate handles as natural resources in drug delivery. Adv Drug Deliv Rev, 1994, 13(3): 311–323CrossRefGoogle Scholar
  8. 8.
    Karamuk E, Mayer J, Wintermantel E, Akaike T. Partially degradable film/fabric composites: Textile scaffolds for liver cell culture. Artif Organs, 1999, 23(9): 881–884CrossRefGoogle Scholar
  9. 9.
    Miyata T, Uragami T, Nakamae K. Biomolecule-sensitive hydrogels. Adv Drug Deliv Rev, 2002, 54(1): 79–98CrossRefGoogle Scholar
  10. 10.
    Li Z C, Liang Y Z, Li F M. Multiple morphologies of aggregates from block copolymers containing glycopolymer segments. Chem Commun, 1999, 16: 1557–1558CrossRefGoogle Scholar
  11. 11.
    Nolting B, Yu J J, Liu G Y, Cho S J, Kauzlarich S, Gervay-Hague J. Synthesis of gold glyconanoparticles and biological evaluation of recombinant GP120 interactions. Langmuir, 2003, 19(16): 6465–6473CrossRefGoogle Scholar
  12. 12.
    Ostuni E, Chapman R G, Holmlin R E, Takayama S, Whitesides G M. Survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir, 2001, 17(18): 5605–5620CrossRefGoogle Scholar
  13. 13.
    Sungjin P, Injae S. Fabrication of carbohydrate chips for studying protein-carbohydrate interactions. Angew Chem Int Edit, 2002, 41(17): 3180–3182CrossRefGoogle Scholar
  14. 14.
    Daniel M R, Eddie W A, Matthew D D, Peter H S. Tools for glycomics: Mapping interactions of carbohydrates in biological systems. ChemBioChem, 2004, 5(10): 1375–1383CrossRefGoogle Scholar
  15. 15.
    Obadiah J P, Emma R P, Peter H S. Automated solid-phase synthesis of oligosaccharides. Science, 2001, 291(5508): 1523–1527CrossRefGoogle Scholar
  16. 16.
    Kou R Q, Qu C, Xu Z K, Xu Y Y, Yao K. Reducing nonselective protein adsorption and cell adhesion on polyacrylonitrile films by copolymerization of acrylonitrile with alpha-allyl glucoside. Chin J Polym Sci, 2003, 21(3): 373–375Google Scholar
  17. 17.
    Hinrichs W L J, ten Hoopen H W M, Engbers G H M, Feijen J. In vitro evaluation of heparinized cuprophan hemodialysis membranes. J Biomed Mater Res, 1997, 35(4): 443–450CrossRefGoogle Scholar
  18. 18.
    Kou R Q, Xu Z K, Deng H T, Liu Z M, Seta P, Xu Y Y. Surface modification of microporous polypropylene membranes by plasma-induced graft polymerization of alpha-allyl glucoside. Langmuir, 2003, 19(17): 6869–6875CrossRefGoogle Scholar
  19. 19.
    Yang Q, Wan L S, Xu Z K. Interaction between the surface glycosylated polypropylene membrane and lectin. Chin J Polym Sci, 2008, 26(3): 1–5Google Scholar
  20. 20.
    Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J. Essentials of Glycobiology. New York: Cold Spring Harbor Laboratory Press, 1999. 31–39Google Scholar
  21. 21.
    Yang Q, Xu Z K, Ulbricht M. Surface modification of polypropylene microporous membrane by the immobilization of dextran. Chem J Chin Univ (in Chinese), 2005, 26(1): 189–191Google Scholar
  22. 22.
    Che A F, Nie F Q, Huang X D, Xu Z K, Yao K. Acrylonitrile-based copolymer membranes containing reactive groups: Surface modification by the immobilization of biomacromolecules. Polymer, 2005, 46(24): 11060–11065CrossRefGoogle Scholar
  23. 23.
    Dai Z W, Nie F Q, Xu Z K. Acrylonitrile-based copolymer membranes containing reactive groups: Fabrication dual-layer biomimetic membranes by the immobilization of biomacromolecules. J Membr Sci, 2005, 264(1–2): 20–26CrossRefGoogle Scholar
  24. 24.
    Zhu Y, Gao C, Liu X, Shen J. Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Bimacromolecules, 2002, 3(6): 1312–1319CrossRefGoogle Scholar
  25. 25.
    Yu D G, Jou C H, Lin W C, Yang M C. Surface modification of poly(tetramethylene adipate-co-terephthalate) membrane via layer-by-layer assembly of chitosan and dextran sulfate polyelectrolyte multiplayer. Colloid Surf B, 2007, 54(2): 222–229CrossRefGoogle Scholar
  26. 26.
    Yu D G, Lin W C, Yang M C. Surface modification of poly(L-lactic acid) membrane via layer-by-layer assembly of silver nanoparticle-embedded polyelectrolyte multilayer. Bioconjugate Chem, 2007, 18(5): 1521–1529CrossRefGoogle Scholar
  27. 27.
    Yang Q, Xu Z K, Dai Z W, Wang J L, Ulbricht M. Surface modification of polypropylene microporous membranes with a novel glycopolymer. Chem Mater, 2005, 17(11): 3050–3058CrossRefGoogle Scholar
  28. 28.
    Yang Q, Hu M X, Dai Z W, Tian J, Xu Z K. Fabrication of glycosylated surface on polymer membrane by UV-induced graft polymerization for lectin recognition. Langmuir, 2006, 22(22): 9345–9349CrossRefGoogle Scholar
  29. 29.
    Yang Q, Tian J, Hu M X, Xu Z K. Construction of a comb-like glycosylated membrane surface by a combination of UV-induced graft polymerization and surface-initiated ATRP. Langmuir, 2007, 23(12): 6684–6690CrossRefGoogle Scholar
  30. 30.
    Yang Q, Xu Z K, Hu M X, Li J J, Wu J. Novel sequence for generating glycopolymer tethered on a membrane surface. Langmuir, 2005, 21(23): 10717–10723CrossRefGoogle Scholar
  31. 31.
    Yang Q, Tian J, Dai Z W, Hu M X, Xu Z K. Novel photoinduced grafting-chemical reaction sequence for the construction of a glycosylation surface. Langmuir, 2006, 22(24): 10097–10102CrossRefGoogle Scholar
  32. 32.
    Fan L, Harris J L, Roddick F A, Booker N A. Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes. Water Res, 2001, 35(18): 4455–4463CrossRefGoogle Scholar
  33. 33.
    Belford G, Davis R H, Zydney A L. The behavior of suspensions and macromolecular solutions in crossflow microfiltration. J Membr Sci, 1994, 96(1–2): 1–58CrossRefGoogle Scholar
  34. 34.
    Chang I S, Bag S O, Lee C H. Effects of membrane fouling on solute rejection during membrane filtration of activated sludge. Process Biochem, 2001, 36(8–9): 855–860CrossRefGoogle Scholar
  35. 35.
    Yu H Y, Xu Z K, Lei H, Hu M X, Yang Q. Photoinduced graft polymerization of acrylamide on polypropylene microporous membranes for the improvement of antifouling characteristics in a submerged membrane-bioreactor. Sep Purif Technol, 2007, 53(1): 119–125CrossRefGoogle Scholar
  36. 36.
    Ye P, Jiang J, Xu Z K. Adsorption and activity of lipase from Candida rugosa on the chitosan-modified poly(acrylonitrile-co-maleic acid) membrane surface. Colloid Surf B, 2007, 60(1): 62–67CrossRefGoogle Scholar
  37. 37.
    Ye P, Xu Z K, Che A F, Wu J, Seta P. Chitosan-tethered poly(acrylonitrile-co-maleic acid) hollow fiber membrane for lipase immobilization. Biomaterials, 2005, 26(32): 6394–6403CrossRefGoogle Scholar
  38. 38.
    Ye P, Xu Z K, Wu J, Innocent C, Seta P. Nanofibrous poly(acrylonitrile-co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization. Biomaterials, 2006, 27(22): 4169–4176CrossRefGoogle Scholar
  39. 39.
    Deng H T, Xu Z K, Wu J, Ye P, Liu Z M, Seta P. A comparative study on lipase immobilized polypropylene microfiltration membranes modified by sugar-containing polymer and polypeptide. J Mol Catal B-Enzym, 2004, 28(2–3): 95–100CrossRefGoogle Scholar
  40. 40.
    Yang Q, Wan L S, Xu Z K. Interaction between the surface glycosylated polypropylene membrane and lectin. Chin J Polym Sci, 2008, 26(3): 363–367CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Institute of Polymer ScienceZhejiang UniversityHangzhouChina

Personalised recommendations