Science in China Series B: Chemistry

, Volume 51, Issue 3, pp 218–225 | Cite as

Analysis of human urine metabolites using SPE and NMR spectroscopy

  • Yang WeiJin 
  • Wang YaWei 
  • Zhou QunFang 
  • Tang HuiRu 


Nuclear magnetic resonance (NMR) spectroscopic analysis of metabonome/metabolome has wide-spread applications in biomedical science researches. However, most of NMR resonances for urinary metabolites remain to be fully assigned. In the present study, human urine samples from two healthy volunteers were pre-treated with C18 solid-phase extraction and the resultant 5 sub-fractions were subjected to one-and two-dimensional NMR studies, including 1H J-Resolved, 1H-1H COSY, 1H-1H TOCSY, 1H-13C HSQC, and HMBC 2D NMR. More than 70 low molecular weight metabolites were identified, and complete assignments of 1H and 13C resonances including many complex coupled spin systems were obtained.


urine metabolites NMR spectroscopy solid phase extraction metabonomics/metabolomics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nicholson J K, Lindon J C, Holmes E. ’Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 1999, 29(11): 1181–1189CrossRefGoogle Scholar
  2. 2.
    Tang H R, Wang Y L. Metabonomics: A revolution in progress. Prog Biochem Biophys, 2006, 33(5): 401–417Google Scholar
  3. 3.
    Tang H R, Wang Y L. Nutrimetabonomics-metabonomics in food science. In: Magnetic Resonance in Food Science: From Molecules to Man (eds. Farhat I A, Belton P S, and Webb G A). Cambridge: Royal Society of Chemistry, 2007Google Scholar
  4. 4.
    Tang H R, Wang Y L. High Resolution NMR Spectroscopy in human metabolism and metabonomics. In: Modern Magnetic Resonance, London: Springer-Verlag, 2006Google Scholar
  5. 5.
    Holmes E, Tang H R, Wang Y L, Seger C. The assessment of plant metabolite profiles by NMR-based methodologies. Plant Med, 2006, 72(9): 771–785CrossRefGoogle Scholar
  6. 6.
    Smith L M, Maher A D, Cloarec O, Rantalainen M, Tang H R, Elliott P, Stamler J, Lindon J C, Holmes E, Nicholson J K. Statistical correlation and projection methods for improved information recovery from diffusion-edited NMR spectra of biological samples. Anal Chem, 2007, 79(15): 5682–5689CrossRefGoogle Scholar
  7. 7.
    Crockford D J, Holmes E, Lindon J C, Plumb R S, Zirah S, Bruce S J, Rainville P, Stumpf C L, Nocholson J K. Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: Application in metabonomic toxicology studies. Anal Chem, 2006, 78(2): 363–371CrossRefGoogle Scholar
  8. 8.
    Rantalainen M, Cloarec O, Beckonert O, Wilson D J, Tonge R, Rowlinson R, Rayner S, Nickson J, Wilkinson R W, Mills J D, Trygg J, Nicholson J K, Holmes E. Statistically integrated metabonomic-proteomic studies on a human prostate cancer xenograft model in mice. J Proteom Res, 2006, 5(10): 2642–2655CrossRefGoogle Scholar
  9. 9.
    Yap I K S, Clayton T A, Tang H R, Everett J R, Hanton G, Provost J P, Net J L, Charuel C, Lindon J C, Nicholson J K. An integrated metabonomic approach to describe temporal metabolic disregulation induced in the rat by the model hepatotoxin allyl formate. J Proteom Res, 2006, 5(10): 2675–2684CrossRefGoogle Scholar
  10. 10.
    Plumb R S, Johnson K A, Rainville P, Smith I D, Castro-Perez J M, Nicholson J K. UPLC/MSE. A new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Commun Mass Spectr, 2006, 20(13): 1989–1994CrossRefGoogle Scholar
  11. 11.
    Crockford D J, Lindon J C, Cloarec O, Plumb R S, Bruce S J, Zirah S, Rainville P, Stumpf C L, Johnson S K, Holmes J E, Nicholson J K. Statistical search space reduction and two-dimensional data display approaches for UPLC-MS in biomarker discovery and pathway analysis. Anal Chem, 2006, 78(13): 4398–4408CrossRefGoogle Scholar
  12. 12.
    Holmes E, Cloarec O, Nicholson J K. Probing latent biomarker signatures and in vivo pathway activity in experimental disease states via statistical total correlation spectroscopy (STOCSY) of biofluids: Application to HgCl2 toxicity. J Proteom Res, 2006, 5(6): 1313–1320CrossRefGoogle Scholar
  13. 13.
    Holmes E, Loo R L, Cloarec O, Coen M, Tang H R, Maibaum E, Bruce S, Chan Q, Elliottm P, Stamler J, Wilson I D, Lindon J C, Nicholson J K. Detection of urinary drug metabolite (Xenometabolome) signatures in molecular epidemiology studies via statistical total correlation (NMR) spectroscopy. Anal Chem, 2007, (79): 2629–2640Google Scholar
  14. 14.
    Liu M L, Tang H R, Nicholson J K, Lindon J C. Recovery of underwater resonances by magnetization transferred NMR spectroscopy (RECUR-NMR). J Magn Reson, 2001, 153(1): 133–137CrossRefGoogle Scholar
  15. 15.
    Liu M L, Tang H R, Nicholson J K, lindon J C. Use of 1H NMR determined diffusion coefficients to characterize lipoprotein fractions in human blood plasma. Magn Reson Chem, 2002, S83–S88Google Scholar
  16. 16.
    Brindle J T, Antti H, Holmes E, Tranter G, Nicholson J K, Bettell H W L, Clarke S, Schofield P M, McKilligin E, Mosedale D E, Grainger D J. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med, 2002, 8(12): 1439–1444CrossRefGoogle Scholar
  17. 17.
    Athersuch T J, Keun H, Nicholson J K. Quantitative urinalysis of the mercapturic acid conjugates of allyl formate using high resolution NMR spectroscopy. J Pharm Biomed Anal, 2006, 40: 410–416CrossRefGoogle Scholar
  18. 18.
    Wang Y L, Holmes E, Tang H R, Lindon J C, Sprenger N, Turini M E, Bergonzelli G, Fay L B, Kochhar S, Nicholson J K. Experimental metabonomic model of dietary variation and stress interactions. J Proteome Res, 2006, 5: 1535–1542CrossRefGoogle Scholar
  19. 19.
    Duarte I F, Stanley E G, Holmes E, Lindon J C, Tang H R, Ferdinand R, McKee C G, Nicholson J K, Vilca-melendze H, Heaton N, Murphy G M. Metabolic assessment of human liver transplants from biopsy samples at the donor and recipient stages using high-resolution magic angle spinning 1H NMR spectroscopy. Anal Chem, 2005, 77(17): 5570–5578CrossRefGoogle Scholar
  20. 20.
    Wang Y L, Tang H R, Nicholson J K, Hylands P J, Sampson J, Holmes E. A metabonomic strategy for the detection of the metabolic effects of chamomile (Matricaria recutita L.) ingestion. J Agri Food Chem, 2005, 53(2): 191–196CrossRefGoogle Scholar
  21. 21.
    Wang Y L, Hylands P J, Sampson J, Whitcombe I, Stewart C G, Caiger S, Oru I, Holmes E, Nicholson J K, Metabolomic strategy for the classification and quality control of phytomedicine: A case study of chamomile flower (Matricaria recutita L.). Plant Med, 2004, 70(3): 250–255CrossRefGoogle Scholar
  22. 22.
    Plumb R S, Johnson K A, Rainville P, Shockcor J P, Williams R, Granger J H, Wilson I D. The detection of phenotypic differences in the metabolic plasma profile of three strains of Zucker rats at 20 weeks of age using ultra-performance liquid chromatography/orthogonal acceleration time-of-flight mass spectrometry. Rapid Commun Mass Spectr, 2006, 20(19): 2800–2806CrossRefGoogle Scholar
  23. 23.
    Wilson I D, Plumb R, Granger J, Major H, Williams R, Lenz E M. HPLC-MS-based methods for the study of metabonomics. J Chromat Anal Technol Biomed Life Sci, 2005, 817(1): 67–76CrossRefGoogle Scholar
  24. 24.
    Yin P Y, Zhao X J, Li Q R, Wang J S, Li J H, Xu G W. Metabonomics study of intestinal fistulas based on ultraperformance liquid chromatography coupled with Q-TOF mass spectrometry (UPLC/Q-TOF MS). J Proteom Res, 2006, 5(9): 2135–2143CrossRefGoogle Scholar
  25. 25.
    Yang J, Zhao X J, Liu X L, Wang C, Gao P, Wang J S, Li L J, Gu J R, Yang S L, Xu G W. High performance liquid chromatography-mass spectrometry for metabonomics: Potential biomarkers for acute deterioration of liver function in chronic hepatitis B. J Proteom Res, 2006, 5(3): 554–561CrossRefGoogle Scholar
  26. 26.
    Qiu Y, Su M, Liu Y, Chen M, Gu J, Zhang J, Jia W. Application of ethyl chloroformate derivatization for gas chromatography-mass spectrometry based metabonomic profiling. Anal Chim Acta, 2007, 583(2): 277–283CrossRefGoogle Scholar
  27. 27.
    Tang H R, Wang Y L, Nicholson J K, Lindon J C. Use of relaxation-edited one-dimensional and two dimensional nuclear magnetic resonance spectroscopy to improve detection of small metabolites in blood plasma. Anal Biochem, 2004, 325(2): 260–272CrossRefGoogle Scholar
  28. 28.
    Wang Y L, Bollard M E, Keun H, Antti H, Beckonert O, Ebbels T M, Lindon J C, Holmes E, Tang H R, Nicholson J K. Spectral editing and pattern recognition methods applied to high-resolution magic-angle spinning 1H nuclear magnetic resonance spectroscopy of liver tissues. Anal Biochem, 2003, 323(1): 26–32CrossRefGoogle Scholar
  29. 29.
    Martin F P J, Dumas M E, Wang Y L, Legido-Quigley C, Yap I K S, Tang H R, Murphy Z G M, Cloarec O, Lindon J C, Sprenger N, Fay E L B, Kochlar S, Holmes E, Nicholson J K. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Systems Biol, 2007, 3: 112Google Scholar
  30. 30.
    Yang Y X, Li C L, Nie X, Feng X S, Chen W X, Yue Y, Tang H R, Deng F. Metabonomic studies of human hepatocellular carcinoma using high-resolution magic-angle spinning 1H NMR spectroscopy in conjunction with multivariate data analysis. J Proteom Res, 2007, 6: 2605–2614CrossRefGoogle Scholar
  31. 31.
    Wang Y L, Tang H R, Holmes E, Lindon J C, Turini M E, Sprenger N, Bergonzelli G, Fay L B, Kochhar S, Nicholson J K. Biochemical characterization of rat intestine development using high-resolution magic-angle-spinning 1H NMR spectroscopy and multivariate data analysis. J Proteom Res, 2005, 4(4): 1324–1329CrossRefGoogle Scholar
  32. 32.
    Wang Y L, Holmes E, Comelli E M, Fotopoulos G, Dorta G, Tang H R, Rantalainen M, Lindon J C, Corthesy I E, Fay L B, Kochhar D, Nicholson J K. Topographical variation in metabolic signatures of human gastrointestinal biopsies revealed by high-resolution magic-angle spinning 1H NMR spectroscopy. J Proteom Res, 2007: 6(10): 3944–3951CrossRefGoogle Scholar
  33. 33.
    Bax A, Davis D G, MLEV-17-based two-dimensional homonuclear magnetisation transfer spectroscopy. J Magn Reson, 1985, 65(2): 355–360Google Scholar
  34. 34.
    Wang Y L, Holmes E, Nicholson J K, Cloarec O, Chollet J, Tanner M, Singer B H, Utzinger J. Metabonomic investigations in mice infected with Schistosoma mansoni: An approach for biomarker identification. Proc Natl Acad Sci 2004, 101(34): 12676–12681CrossRefGoogle Scholar
  35. 35.
    Wang Y L, Utzinger J, Xiao S H, Xue J, Nicholson J K, Marcel T S B H, Holmes E. System level metabolic effects of a Schistosoma japonicum infection in the Syrian hamster. Mol Biochem Parasitol, 2006, 146(1): 1–9CrossRefGoogle Scholar
  36. 36.
    Fan T W M, Metabolite profiling by one-and two-dimensional NMR analysis of complex mixtures. Prog NMR Spectr, 1996, 28: 161–219Google Scholar

Copyright information

© Science in China Press 2008

Authors and Affiliations

  1. 1.State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhanChina

Personalised recommendations