Advertisement

Science in China Series B: Chemistry

, Volume 50, Issue 4, pp 530–537 | Cite as

A post-modification approach to independent component analysis for resolution of overlapping GC/MS signals: from independent components to chemical components

  • Wang Wei 
  • Cai WenSheng 
  • Shao XueGuang 
Research Parpers

Abstract

Independent component analysis (ICA) has demonstrated its power to extract mass spectra from overlapping GC/MS signal. However, there is still a problem that mass spectra with negative peaks at some m/z will be obtained in the resolved results when there are overlapping peaks in the mass spectra of a mixture. Based on a detail theoretical analysis of the preconditions for ICA and the non-negative property of GC/MS signals, a post-modification based on chemical knowledge (PMBK) strategy is proposed to solve this problem. By both simulated and experimental GC/MS signals, it was proved that the PMBK strategy can improve the resolution effectively.

Keywords

independent component analysis (ICA) post modification immune algorithm (IA) GC/MS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersson R, Hamalainen M D. Simplex focusing of retention times and latent variable projections of chromatographic profiles. Chemometr Intell Lab Syst, 1994, 22: 49–61CrossRefGoogle Scholar
  2. 2.
    Bu D S, Brown C W. Self-modeling mixture analysis by interactive principal component analysis. Appl Spectrosc, 2000, 54: 1214–1221CrossRefGoogle Scholar
  3. 3.
    Maeder M. Evolving factor analysis for the resolution of overlapping chromatographic peaks. Anal Chem, 1987, 59: 527–530CrossRefGoogle Scholar
  4. 4.
    Schostack K J, Malinowski E R. Investigation of window factor-analysis and matrix regression-analysis in chromatography. Chemometr Intell Lab Syst, 1993, 20: 173–182CrossRefGoogle Scholar
  5. 5.
    Liang Y Z, Kvalheim O M, Rahmani A, Brereton R G. Resolution of strongly overlapping 2-way multicomponent data by means of heuristic evolving latent projections. J Chemometr, 1993, 7: 15–43CrossRefGoogle Scholar
  6. 6.
    Borges A, Tauler R, de Juan A. Application of multivariate curve resolution to the temperature-induced unfolding of alphachymotrypsin. Anal Chim Acta, 2005, 544(1–2): 159–166CrossRefGoogle Scholar
  7. 7.
    Jaumot J, Gargallo R, de Juan A, Tauler R. A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB. Chemometr Intell Lab Syst, 2005, 76(1): 101–110CrossRefGoogle Scholar
  8. 8.
    Shao X G, Chen Z H, Lin X Q. Resolution of multicomponent overlapping chromatogram using an immune algorithm and genetic algorithm. Chemometr Intell Lab Syst, 2000, 50: 91–99CrossRefGoogle Scholar
  9. 9.
    Sun L, Cai W S, Shao X G. A two-dimensional immune algorithm for resolution of overlapping two-way chromatograms. Fresenius J Anal Chem, 2000, 37: 16–21Google Scholar
  10. 10.
    Shao X G, Yu Z L, Sun L. Immune algorithms in analytical chemistry. TrAC-Trends in Anal Chem, 2003, 22: 59–69CrossRefGoogle Scholar
  11. 11.
    Shao X G, Leung A K M, Chau F T. Wavelet: a new trend in chemistry. Acc Chem Res, 2003, 36: 276–283CrossRefGoogle Scholar
  12. 12.
    Leung A K M, Chau F T, Gao J B. A review on applications of wavelet transform techniques in chemical analysis: 1989–1997. Chemometr Intell Lab Syst, 1998, 43: 165–184CrossRefGoogle Scholar
  13. 13.
    Shao X G, Cai W S. Wavelet analysis in analytical chemistry. Rev Anal Chem, 1998, XVII: 235–285Google Scholar
  14. 14.
    Shao X G, Cai W S, Sun P Y, Zhang M S, Zhao G W. Quantitative determination of the components in overlapping chromatographic peaks using wavelet transform. Anal Chem, 1997, 69: 1722–1725CrossRefGoogle Scholar
  15. 15.
    Jutten C, Herault J. Blind separation of sources. Part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing, 1999, 24: 1–10CrossRefGoogle Scholar
  16. 16.
    Comon P. Independent component analysis, a new concept? Signal Processing, 1994, 36: 287–314CrossRefGoogle Scholar
  17. 17.
    Hyvärinen A, Oja E. Independent component analysis: algorithm and applications. Neural Networks, 2000, 13: 411–430CrossRefGoogle Scholar
  18. 18.
    De Lathauwer L, De Moor B, Vanderwalle J. An introduction to independent component analysis. J Chemometr, 2000, 14: 123–149CrossRefGoogle Scholar
  19. 19.
    Stone J V. Independent component analysis: an introduction. Trends in Cognitive Sciences, 2002, 6: 59–64CrossRefGoogle Scholar
  20. 20.
    Makeig S, Westerfield M, Jung T P, Enghoff S, Townsend J, Courchesne E, Sejnowski T J. Dynamic brain sources of visual evoked responses. Science, 2002, 295: 690–694CrossRefGoogle Scholar
  21. 21.
    Back A D, Weigend A S. A first application of independent component analysis to extracting structure from stock returns. International J on Neural Systems, 1997, 8: 473–484CrossRefGoogle Scholar
  22. 22.
    Visser E, Lee T W. An information-theoretic methodology for the resolution of pure component spectra without prior information using spectroscopic measurements. Chemometr Intell Lab Syst, 2004, 70: 147–155CrossRefGoogle Scholar
  23. 23.
    Bi X, Li T H, Wu L. Application of independent component analysis to the IR spectra analysis. Chem J Chin Univ (in Chinese), 2004, 25: 1023–1027Google Scholar
  24. 24.
    Chen J, Wang X Z. A new approach to near-infrared spectral data analysis using independent component analysis. J Chem Inf Comput Sci, 2001, 41: 992–1001CrossRefGoogle Scholar
  25. 25.
    Pichler A, Sowa M G. Independent component analysis of photoacoustic depth profiles. J Mol Spectrosc, 2005, 229: 231–237CrossRefGoogle Scholar
  26. 26.
    Shao X G, Wang G Q, Wang S F, Su Q D. Extraction of mass spectra and chromatographic profiles from overlapping GC/MS signal with background. Anal Chem, 2004, 76: 5143–5148CrossRefGoogle Scholar
  27. 27.
    Ren J Y, Chang C Q, Fung P C W, Shen J G, Chan F H Y. Free radical EPR spectroscopy analysis using blind source separation. J Magnetic Reson, 2004: 166, 82–91CrossRefGoogle Scholar
  28. 28.
    Højen-Sørensen P, Winther O, Hansen L. Mean-field approaches to independent component analysis. Neural Computation, 2002, 14: 889–918CrossRefGoogle Scholar
  29. 29.
    Bell A J, Sejnowski T J. An information maximization approach to blind separation and blind deconvolution. Neural Computation, 1995, 7: 1129–1159CrossRefGoogle Scholar
  30. 30.
    Cardoso J F, Souloumiac A. Blind beamforming for non-gaussian signals. Proc Inst Electr Eng F, 1993, 40: 362–370Google Scholar
  31. 31.
    Hyvärinen A, Oja E. A fast fixed-point algorithm for independent component analysis. Neural Computation, 1997, 9: 1483–1492.CrossRefGoogle Scholar
  32. 32.
    Hyvärinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Networks, 1999, 10: 626–634CrossRefGoogle Scholar
  33. 33.
    Foley J P. Equations for chromatographic peak modeling and calculation of peak area. Anal Chem, 1987, 59: 1984–1987CrossRefGoogle Scholar
  34. 34.
    Kraskov A, Stogbauer H, Grassberger P. Estimating mutual information. Physical Review E, 2004, 69: 066138Google Scholar

Copyright information

© Science in China Press 2007

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of ChemistryNankai UniversityTianjinChina

Personalised recommendations