Science in China Series B: Chemistry

, Volume 50, Issue 2, pp 276–283 | Cite as

Synthesis of O-(2-[18F]fluoroethyl)-L-tyrosine and its biological evaluation in B16 melanoma-bearing mice as PET tracer for tumor imaging

  • Wang MingWei 
  • Yin DuanZhi 
  • Li ShiQiang 
  • Wang YongXian 
Research Papers

Abstract

O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET), a fluorine-18 labeled analogue of tyrosine, has been synthesized and biologically evaluated in tumor-bearing mice. The whole synthesis procedure is completed within 50 min. The radiochemical yield is about 40% (no decay corrected) and radiochemical purity more than 97% after simplified solid phase extraction. [18F]FET shows rapid, high uptake and long retention in the tumor as well as low uptake in the brain. The ratios of tumor-to-muscle (T/M) and tumor-to-blood (T/B) of [18F]FET are similar to those of [18F]FDG, but the ratios of tumor-to-brain (T/Br) are 2–3 times higher than that of [18F]FDG. Autoradiography of [18F]FET demonstrates a remarkable accumulation in melanoma with high contrast. It appears to be a probable competitive candidate for melanoma imaging with PET.

Keywords

[18F]FET [18F]FDG PET imaging melanoma autoradiography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hustinx R, Benard F, Alavi A. Whole-body FDG-PET imaging in the management of patients with cancer. Semin Nucl Med, 2002, 32(1): 35–46CrossRefGoogle Scholar
  2. 2.
    Gambhir S S, Czernin J, Schwimmer J, Silverman D H S, Coleman R E, Phelps M E. A tabulated summary of the FDG PET literature. J Nucl Med, 2001, 42(Suppl): 1S–93SGoogle Scholar
  3. 3.
    Heiss P, Mayer S, Herz M, Wester H J, Schwaiger M, Senekowitsch-Schmidtke R. Investigation of transport mechanism and uptake kineticsof O-(2-[18F]fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med, 1999, 40(8): 1367–1373Google Scholar
  4. 4.
    Kubota R, Kubota K, Yamada S, Tada M, Ido T, Tamahashi N. Microautoradiographic study for the differentiation of intratumoral macrophages, granulation tissues and cancer cells by the dynamics of fluorine-18-fluorodeoxyglucose uptake. J Nucl Med, 1994, 35(1): 104–112Google Scholar
  5. 5.
    Shreve P D, Anzai Y, Wahl R L. Pitfalls in oncologic diagnosis with FDG PET imaging: Physiologic and benign variants. Radiographics, 1999, 19(1): 61–77Google Scholar
  6. 6.
    Brown R S, Leung J Y, Kison P V, Zasadny K R, Flint A, Wahl R L. Glucose transporters and FDG uptake in untreated primary human non-small cell lung cancer. J Nucl Med, 1999, 40(4): 556–565Google Scholar
  7. 7.
    Marom E M, Aloia T A, Moore M B, Hara M, Herndon II J E, Harpole Jr D H. Correlation of FDG-PET imaging with Glut-1 and Glut-3 expression in early-stage non-small cell lung cancer. Lung Cancer, 2001, 33(2): 99–107CrossRefGoogle Scholar
  8. 8.
    Jager P L, Vaalburg W, Pruim J, de Vries E G E, Langen K J, Riers D A. Radiolabeled amino acids: Basic aspects and clinical applications in oncology. J Nucl Med, 2001, 42(3): 432–45Google Scholar
  9. 9.
    Laverman P, Boerman O C, Corstens F H M, et al. Fluorinated amino acids for tumour imaging with positron emission tomography. Eur J Nucl Med, 2002, 29: 681–690CrossRefGoogle Scholar
  10. 10.
    Wester H J, Herz M, Weber W, Schwaiger M, Stocklin G. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med, 1999, 40(1): 205–212Google Scholar
  11. 11.
    Coenen H H, Kling P, Stocklin G. Cerebral metabolism of L-[2-18F]fluorotyrosine, a new PET tracer of protein synthesis. J Nucl Med, 1989, 30(8): 1367–1372Google Scholar
  12. 12.
    Wienhard K, Herholz K, Coenen H H, Rudolf J, Kling P, Stocklin G, Heiss W D. Increased amino acid transport into brain tumors measured by PET of L-(2-18F)fluorotyrosine. J Nucl Med, 1991, 32(9): 1338–1346Google Scholar
  13. 13.
    Inoue T, Tomiyoshi K, Higuichi T, Ahmed K, Sarwar M, Aoyagi K, Amano S, Alyafei S, Zhang H, Endo K. Biodistribution studies on L-3-[fluorine-18]fluoro-alpha-methyl tyrosine: A potential tumordetecting agent. J Nucl Med, 1998, 39(4): 663–667Google Scholar
  14. 14.
    Inoue T, Shibasaki T, Oriuchi N, Aoyagi K, Tomiyoshi K, Amano S, Mikuni M, Ida I, Aoki J, Endo K. 18F alpha-methyl tyrosine PET studies in patients with brain tumors. J Nucl Med, 1999, 40(3): 399–405Google Scholar
  15. 15.
    Tang G H, Wang M F, Tang X L, Luo L, Gan M Q. Fully automated synthesis of O-(2-[18F]fluoroethyl)-L-tyrosine. J Nucl Radiochem (in Chinese), 2003, 25(1): 44–48Google Scholar
  16. 16.
    Hamacher K, Coenen H H. Efficient routine production of the 18F-labelled amino acid O-(2-[18F]fluoroethyl)-L-tyrosine. Appl Radiat Isotopes, 2002, 57(6): 853–856CrossRefGoogle Scholar
  17. 17.
    Wang H E, Wu S Y, Chang C W, Liu R S, Hwang L C, Lee T W, Chen J C, Hwang J J. Evaluation of F-18-labeled amino acid derivatives and [18F]FDG as PET probes in a brain tumor-bearing animal model. Nucl Med Biol, 2005, 32(4): 367–375CrossRefGoogle Scholar
  18. 18.
    Pöpperl G, Götz C, Rachinger W, Gildehaus F J, Tonn J C, Tatsch K. Value of O-(2-[18F]fluoroethyl)-L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging, 2004, 31(11): 1464–1470CrossRefGoogle Scholar
  19. 19.
    Weber W A, Wester H J, Grosu A L, Herz M, Dzewas B, Feldmann H J, Molls M, Stöcklin G, Schwaiger M. O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med, 2000, 27(5): 542–549CrossRefGoogle Scholar
  20. 20.
    Weckesser M, Langen K J, Rickert C H, Kloska S, Straeter R, Hamacher K, Kurlemann G, Wassmann H, Coenen H H, Schober O. O-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur J Nucl Med Mol Imaging, 2005, 32(4): 422–429CrossRefGoogle Scholar
  21. 21.
    Pauleit D, Stoffels G, Schaden W, Hamacher K, Bauer D, Tellmann L, Herzog H, Bröer S, Coenen H H, Langen K J. PET with O-(2-18F-Fluoroethyl)-L-tyrosine in peripheral tumors: First clinical results. J Nucl Med, 2005, 46(3): 411–416Google Scholar
  22. 22.
    Moreau M F, Papon J, Labarre P, Moins N, Borel M, Bayle M, Bouchon B, Madelmont J C. Synthesis, in vitro binding and biodistribution in B16 melanoma-bearing mice of new iodine-125 spermidine benzamide derivatives. Nucl Med Biol, 2005, 32(4): 377–384CrossRefGoogle Scholar
  23. 23.
    Moon B S, Kim S W, Lee T S, Ahn S H, Lee K C, An G I, Yang S D, Chi D Y, Choi C W, Lim S M, Chun K S. Synthesis of O-(3-[18F]Fluoropropyl)-L-tyrosine (L-[18F]FPT) and its biological evaluation in 9L tumor bearing rat. B Kor Chem Soc, 2005, 26(1): 91–96CrossRefGoogle Scholar

Copyright information

© Science in China Press 2007

Authors and Affiliations

  • Wang MingWei 
    • 1
  • Yin DuanZhi 
    • 1
  • Li ShiQiang 
    • 1
  • Wang YongXian 
    • 1
  1. 1.Radiopharmaceutical Centre, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina

Personalised recommendations