Science in China Series B: Chemistry

, Volume 49, Issue 5, pp 385–401 | Cite as

Applications of functionalized ionic liquids

Article

Abstract

Recent developments of the synthesis and applications of functionalized ionic liquids (including dual-functionalized ionic liquids) have been highlighted in this review. Ionic liquids are attracting attention as alternative solvents in green chemistry, but as more functionalized ILs are prepared, a greater number of applications in increasingly diverse fields are found.

Keywords

ionic liquids functionalized ionic liquids dual-functionalized ionic liquids reaction media asymmetric synthesis nano-materials porous materials lubricants flue-gas desulfurization oil desulfurization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clark J H. Green chemistry: Challenges and opportunities. Green Chem, 1999, (1): 1–8Google Scholar
  2. 2.
    Liu H, Tao G-H, Evans D G, Kou Y. Solubility of C60 in ionic liquids. Carbon, 2005, 43(8): 1782–1785CrossRefGoogle Scholar
  3. 3.
    Chum H L, Koch V R, Miller L L, Osteryoung R A. Electrochemical scrutiny of organometallic iron complexes and hexame-thylbenzene in a room temperature molten salt. J Am Chem Soc, 1975, 97(11): 3264–3265CrossRefGoogle Scholar
  4. 4.
    Robinson J, Bugle R C, Chum H L, Koran D, Osteryoung R A. Proton and carbon-13 nuclear magnetic resonance spectroscopy studies of aluminium halide-alkylpyridinium halide molten salts and their benzene solutions. J Am Chem Soc, 1979, 101(14): 3776–3779CrossRefGoogle Scholar
  5. 5.
    Laher T M, Hussey C L. Electrochemical studies of chloro complex formation in low-temperature chloroaluminate melts. 1. Iron(II), iron(III), and nickel(II). Inorg Chem, 1982, 21(11): 4079–4083CrossRefGoogle Scholar
  6. 6.
    Scheffler T B, Hussey C L, Seddon K R, Kear C M, Armitage P D. Molybdenum chloro complexes in room-temperature chloroaluminate ionic liquids: Stabilization of hexachloromolybdate(2-) and hexachloromolybdate(3-). Inorg Chem, 1983, 22(15): 2099–2100CrossRefGoogle Scholar
  7. 7.
    Appleby D, Hussey C L, Seddon K R, Turp J E. Room-temperature ionic liquids as solvents for electronic absorption spectroscopy of halide complexes. Nature, 1986, 323: 614–616CrossRefGoogle Scholar
  8. 8.
    Boon J A, Levisky J A, Pflug J L, Wilkes J S. Friedel-Crafts reactions in ambient-temperature molten salts. J Org Chem, 1986, 51(4): 480–483CrossRefGoogle Scholar
  9. 9.
    Chauvin Y, Gilbert B, Guibard I. Catalytic dimerization of alkenes by nickel complexes in organochloroaluminate molten salts. J Chem Soc Chem Commun, 1990, (23): 1715–1716Google Scholar
  10. 10.
    Carlin R T, Wilkes J S. Complexation of metallocene dichloride (Cp2MCl2) in a chloroaluminate molten salt: Relevance to homogeneous Ziegler-Natta catalysis. J Mol Catal, 1990, 63(2): 125–129CrossRefGoogle Scholar
  11. 11.
    Wilkes J S, Zaworotko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun, 1992, 13: 965–967CrossRefGoogle Scholar
  12. 12.
    Zhao D, Wu M, Kou Y, Min E. Ionic liquids: Applications in catalysis. Catal Today, 2002, 74(1–2): 157–189CrossRefGoogle Scholar
  13. 13.
    Freemental M. Ionic liquids make slash in industry. Chem Eng News, 2003, August 1: 33–38Google Scholar
  14. 14.
    Wasserscheid P, Welton T, eds. Ionic Liquid in Synthesis. Berlin: Wiley-VCH, 2002Google Scholar
  15. 15.
    Peris E, Crabtree R H. Recent homogeneous catalytic applications of chelate and pincer N-heterocyclic carbenes. Coord Chem Rev, 2004, 248(21–24): 2239–2246CrossRefGoogle Scholar
  16. 16.
    Crudden C M, Allen D P. Stability and reactivity of N-heterocyclic carbene complexes. Coord Chem Rev, 2004, 248(21–24): 2247–2273CrossRefGoogle Scholar
  17. 17.
    Antonietti E, Kuang D, Smarsly B, Zhou Y. Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew Chem Int Ed, 2004, 43(38): 4988–4992CrossRefGoogle Scholar
  18. 18.
    Tao G-H, Zou M, Wang X-H, Chen Z-Y, Evans D G, Kou Y. Comparison of polarities of room-temperature ionic liquids using FT-IR spectroscopic probes. Austr J Chem, 2005, 58(5): 327–331CrossRefGoogle Scholar
  19. 19.
    Wu J, Zhang J, Zhang H, He J, Ren Q, Guo M. Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules, 2004, 5(2): 266–268CrossRefGoogle Scholar
  20. 20.
    Yang Y-L, Kou Y. Determination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe. Chem Commun, 2004, (2): 226–227Google Scholar
  21. 21.
    Wilkes J S. A short history of ionic liquids-from molten salts to neoteric solvents. Green Chem, 2002, 4(2): 73–80CrossRefGoogle Scholar
  22. 22.
    Dyson P J, Grossel M C, Srinivasan N, Vine T, Welton T, Williams D J, White A J P, Zigras T. Organometallic synthesis in ambient temperature chloroaluminate(III) ionic liquids. Ligand exchange reactions of ferrocene. J Chem Soc Dalton Trans: Inorg Chem, 1997, 3465–3469Google Scholar
  23. 23.
    Crofts D, Dyson P J, Sanderson K M, Srinivasan N, Welton T. Chloroaluminate(III) ionic liquid mediated synthesis of transition metal-cyclophane complexes: Their role as solvent and Lewis acic catalyst. J Organomet Chem, 1999, 573: 292–298CrossRefGoogle Scholar
  24. 24.
    Cole A C, Jensen J L, Ntai I, Tran K L T, Weaver K J, Forbes D C, Davis J H Jr. Novel bronsted acidic ionic liquids and their use as dual solvent-catalysts. J Am Chem Soc, 2002, 124(21): 5962–5963CrossRefGoogle Scholar
  25. 25.
    Li D, Shi F, Peng J, Guo S, Deng Y. Application of functional ionic liquids possessing two adjacent acid sites for acetalization of aldehydes. J Org Chem, 2004, 69(10): 3582–3585CrossRefGoogle Scholar
  26. 26.
    Fei Z, Zhao D, Geldbach T J, Scopelliti R, Dyson P J. Bronsted acidic ionic liquids and their zwitterions: Synthesis, characterization and pKa determination. Chem Eur J, 2004, 10: 4886–4893CrossRefGoogle Scholar
  27. 27.
    Wu H-H, Sun J, Yang F, Tang J, He M-Y. Immobilization of HX. [Hmim]X as halogenating agent, recyclable catalyst, and medium for conversion of alcohols to alkyl halides. Chin J Chem, 2004, 22(7): 619–621CrossRefGoogle Scholar
  28. 28.
    Ramnial T, Ino D D, Clyburne J A C. Phosphonium ionic liquids as reaction media for strong bases. Chem Commun, 2005, (3): 325–327Google Scholar
  29. 29.
    Handy S T. Greener solvents: Room temperature ionic liquids from biorenewable sources. Chem Eur J, 2003, 9(13): 2938–2944CrossRefGoogle Scholar
  30. 30.
    Yang Y-L, Wang X-H, Kou Y, Min E-Z. Growing familiy of ionic liquids. Prog Chem(in Chinese), 2003, 15(6): 471–476Google Scholar
  31. 31.
    Liu H, Tao G-H, Shao Y-H, Kou Y. Applications of functionalized ionic liquids in electrochemistry. Chemistry Online(in Chinese), 2004, 67(11): 795–801Google Scholar
  32. 32.
    Dyson P J. Catalysis by low oxidation state transition metal (carbonyl) clusters. Coord Chem Rev, 2004, 248: 2443–2458CrossRefGoogle Scholar
  33. 33.
    Dyson P J. Synthesis of organometallics and catalytic hydrogenations in ionic liquids. Appl Organomet Chem, 2002, 16: 495–500CrossRefGoogle Scholar
  34. 34.
    Dyson P J. Transition metal chemistry in ionic liquids. Trans Met Chem, 2002, 27: 353–358CrossRefGoogle Scholar
  35. 35.
    Welton T, Smith P J. Palladium catalyzed reactions in ionic liquids. Adv Organomet Chem, 2004, 51: 251–284Google Scholar
  36. 36.
    Li R-X. Green Solvents: The Synthesis and Application of Ionic Liquids(in Chinese). Beijing: Chemical Engineering Publishing, 2004Google Scholar
  37. 37.
    Mehnert C P. Supported ionic liquid catalysis. Chem Eur J, 2004, 11: 50–56CrossRefGoogle Scholar
  38. 38.
    Dyson P J. Biphasic chemistry utilising ionic liquids. Chimia, 2005, 59: 66–71CrossRefGoogle Scholar
  39. 39.
    Tao G-H, Chen Z-Y, He L, Kou Y. Design of novel liquid-liquid biphasic catalytic system: π-acceptor ligand ionic liquids. Chinese Journal of Catalysis(in Chinese), 2005, 26(3): 248–252Google Scholar
  40. 40.
    Fei Z, Geldbach T J, Zhao D, Dyson P J. From dysfunction to bis-function: On the design and applications of functionalised ionic liquids. Chem Eur J, 2006, 12: 2122–2130CrossRefGoogle Scholar
  41. 41.
    Harlow K J, Hill A F, Welton T. Convenient and general synthesis of symmetrical N,N′-disubstituted imidazolium halides. Synthesis, 1996, 6: 697–698CrossRefGoogle Scholar
  42. 42.
    Dzyuba S V, Bartsch R A. New room-temperature ionic liquids with C2-symmetrical imidazolium cations. Chem Commun, 2001, (16): 1466–1467Google Scholar
  43. 43.
    Davis J H Jr. Task-specific ionic liquids. Chem Lett, 2004, 33(9): 1072–1077CrossRefGoogle Scholar
  44. 44.
    Pernak J, Sobaszkiewicz K, Foksowicz-Flaczyk J. Ionic liquids with symmetrical dialkoxymethyl-substituted imidazolium cations. Chem Eur J, 2004, 10(14): 3479–3485CrossRefGoogle Scholar
  45. 45.
    Zhao D, Fei Z, Scopelliti R, Dyson P J. Synthesis and characterization of ionic liquids incorporating the nitrile functionality. Inorg Chem, 2004, 43: 2197–2205Google Scholar
  46. 46.
    Moret M-E, Chaplin A B, Lawrence A K, Scopelliti R, Dyson P J. Synthesis and characterization of organometallic ionic liquids and a heterometallic carbene complex containing the chromium tricarbonyl fragment. Organometallics, 2005, 24: 4039–4048CrossRefGoogle Scholar
  47. 47.
    Fei Z, Zhao D, Scopelliti R, Dyson P J. Organometallic complexes deried from alkyne-functionalized imidazolium salts. Organometallis, 2004, 23: 1622–1628CrossRefGoogle Scholar
  48. 48.
    Mu Z-G, Zhou F, Zhang S-X, Liang Y-M, Liu W-M. Preparation and characterization of new phosphonyl-substituted imidazolium ionic liquids. Helv Chim Acta, 2004, 87: 2549–2555CrossRefGoogle Scholar
  49. 49.
    Zhao D, Fei Z, Geldbach T J, Scopelliti R, Laurenczy G, Dyson P J. Allyl-functionalised ionic liquids: Synthesis, characterisation, and reactivity. Helv Chim Acta, 2005, 88: 665–675CrossRefGoogle Scholar
  50. 50.
    Fei Z, Zhao D, Geldbach T J, Scopelliti R, Dyson P J. Structure of nitrile-functionalized alkyltrifluoroborate salts. Eur J Inorg Chem, 2005, 860–865Google Scholar
  51. 51.
    Geldbach T J, Dyson P J. Searching for molecular arene hydrogenation catalysis in ionic liquids. J Organomet Chem, 2005, 690: 3552–3557CrossRefGoogle Scholar
  52. 52.
    Geldbach T J, Brown M R H, Scopelliti R, Dyson P J. Ruthenium-benzocrownether complexes: Synthesis, structures, catalysis and immobilisation in ionic liquids. J Organomet Chem, 2005, 690: 5055–5056CrossRefGoogle Scholar
  53. 53.
    Nama D, Kumar P G A, Pregosin P S, Geldbach T J, Dyson P J. 1H, 19F-HOESY and PGSE diffusion studies on ionic liquids: The effect of co-solvent on structure. Inorg Chim Acta, 2006, 359(6): 1907–1911CrossRefGoogle Scholar
  54. 54.
    Chiappe C, Pieraccini D, Zhao D, Fei Z, Dyson P J. Remarkable anion and cation effects on Stille reactions in ionic liquids. Adv Synth Catal, 2006, 348(1+2): 68–74CrossRefGoogle Scholar
  55. 55.
    Fei Z, Ang W-H, Geldbach T J, Scopelliti R, Dyson P J. Ionic liquid state dimers and polymers derived from imidazolium dicarboxylic acid. Chem Eur J, 2006, 12(15): 4014–4020CrossRefGoogle Scholar
  56. 56.
    Geldbach T J, Laurenczy G, Scopelliti R, Dyson P J. Synthesis of imidazolium tethered ruthenium(II)-arene complexes and their application in biphasic catalysis. Organometallics, 2006, 25: 733–742CrossRefGoogle Scholar
  57. 57.
    Muldoon M J, McLean A J, Gordon C M, Dunkin I R. Hydrogen abstraction from ionic liquids by benzophenone triplet excited states. Chem Commun, 2001, 22: 2364–2365CrossRefGoogle Scholar
  58. 58.
    Gallo V, Mastrorilli P, Nobile C F, Romanazzi G, Suranna G P. How does the presence of impurities change the performance of catalytic systems in ionic liquids? A case study: The Michael addition of acetylacetone to methyl vinyl ketone. J Chem Soc Dalton Trans, 2002, 23: 4339–4342CrossRefGoogle Scholar
  59. 59.
    Zhou Z-B, Takeda M, Ue M. New hydrophobic ionic liquids based on perfluoroalkyltrifluoroborate anions. J Fluo Chem, 2004, 125(3): 471–476CrossRefGoogle Scholar
  60. 60.
    Xue H, Twamley B, Shreeve J M. The first 1-alkyl-3-perfluoroalkyl-4,5-dimethyl-1,2,4-triazolium salts. J Org Chem, 2004, 69(4): 1397–1400CrossRefGoogle Scholar
  61. 61.
    Omotowa B A, Shreeve J M. Triazine-based polyfluorinated triquaternary liquid salts: Synthesis, characterization, and application as solvents in rhodium(I)-catalyzed hydroformylation of 1-octene. Organometallics, 2004, 23(4): 783–791CrossRefGoogle Scholar
  62. 62.
    Omotowa B A, Phillips B S, Zabinski J S, Shreeve J M. Phosphazene-based ionic liquids: Synthesis, temperature-dependent viscosity, and effect as additives in water lubrication of silicon nitride ceramics. Inorg Chem, 2004, 43(17): 5466–5471CrossRefGoogle Scholar
  63. 63.
    Gupta O D, Armstrong P D, Shreeve J M. Quaternary trialkyl(polyfluoroalkyl)ammonium salts including liquid iodides. Tetrahedron Lett, 2003, 44(52): 9367–9370CrossRefGoogle Scholar
  64. 64.
    Gao Y, Arritt S W, Twamley B, Shreeve J M. Guanidinium-based ionic liquids. Inorg Chem, 2005, 44(6): 1704–1712CrossRefGoogle Scholar
  65. 65.
    Xiao J-C, Shreeve J M. Synthesis of 2,2′-biimidazolium-based ionic liquids: Use as a new reaction medium and ligand for palladium-catalyzed suzuki cross-coupling reactions. J Org Chem, 2005, 70(8): 3072–3078CrossRefGoogle Scholar
  66. 66.
    Bao W, Wang Z, Li Y, Synthesis of chiral ionic liquids from natural amino acids. J Org Chem, 2003, 68(2): 591–593CrossRefGoogle Scholar
  67. 67.
    Jodry J J, Mikami K. New chiral imidazolium ionic liquids: 3D-network of hydrogen bonding. Tetrahedron Lett, 2004, 45(23): 4429–4431CrossRefGoogle Scholar
  68. 68.
    Thanh G V, Pegot B, Loupy A. Solvent-free microwave-assisted preparation of chiral ionic liquids from (-)-N-methylephedrine. Eur J Org Chem, 2004, 5: 1112–1116CrossRefGoogle Scholar
  69. 69.
    Tosoni M, Laschat S, Baro A. Synthesis of novel chiral ionic liquids and their phase behavior in mixtures with smectic and nematic liquid crystals. Helv Chim Acta, 2004, 87(11): 742–2749CrossRefGoogle Scholar
  70. 70.
    Ding J, Welton T, Armstrong D W. Chiral ionic liquids as stationary phases in gas chromatography. Anal Chem, 2004, 76(22): 6819–6822CrossRefGoogle Scholar
  71. 71.
    Matsumoto H, Mazda T, Miyazaki I. Room temperature molten salts based on trialkylsulfonium cations and bis(trifluorome-thylsulfonyl)imide. Chem Lett, 2000, 1430–1431Google Scholar
  72. 72.
    Ropponen J, Lahtinen M, Busi S, Nissinen M, Kolehmainen E, Rissanen K. Novel one-pot synthesis of quaternary ammonium halides: New route to ionic liquids. New J Chem, 2004, 28(12): 1426–1430Google Scholar
  73. 73.
    Martiz B, Keyrouz R, Gmouh S, Vaultier M, Jouikov V. Superoxide-stable ionic liquids: New and efficient media for electrosynthesis of functional siloxanes. Chem Commun, 2004, (6): 674–675Google Scholar
  74. 74.
    Ludley P, Karodia N. Phosphonium tosylates as solvents for the Diels-Alder reaction. Tetrahedron Lett, 2001, 42(10): 2011–2014CrossRefGoogle Scholar
  75. 75.
    Netherton M R, Fu G C. Air-stable trialkylphosphonium salts: Simple, practical, and versatile replacements for air-sensitive trialkylphosphines. Applications in stoichiometric and catalytic processes. Org Lett, 2001, 3(26): 4295–4298CrossRefGoogle Scholar
  76. 76.
    Bradaric C J, Downard A, Kennedy C, Robertson A J, Zhou Y. Industrial preparation of phosphonium ionic liquids. Green Chem, 2003, 5(2): 143–152CrossRefGoogle Scholar
  77. 77.
    Tao G-H, He L, Sun N, Kou Y. New generation ionic liquids: Cations derived from amino acids. Chem Commun, 2005, 28: 3562–3563CrossRefGoogle Scholar
  78. 78.
    Dai L, Yu S, Shan Y, He M. Novel room temperature inorganic ionic liquids. Eur J Inorg Chem, 2004, 2: 237–241CrossRefGoogle Scholar
  79. 79.
    Earle M J, McCormac P B, Seddon K R. Diels-Alder reactions in ionic liquids. Green Chem, 1999, 1(1): 23–25CrossRefGoogle Scholar
  80. 80.
    Wasserscheid P, Boesmann A, Bolm C. Synthesis and properties of ionic liquids derived from the “chiral pool”. Chem Commun, 2002, (3): 200–201Google Scholar
  81. 81.
    Bicak N. A new ionic liquid: 2-hydroxy ethylammonium formate. J Mol Liq, 2004, 116(1): 15–18CrossRefGoogle Scholar
  82. 82.
    Brown R J C, Dyson P J, Ellis D J, Welton T. 1-butyl-3-methylimidazolium cobalt tetracarbonyl [bmim][Co(CO)4]: A catalytically active organometallic ionic liquid. Chem Commun, 2001, 1862–1863Google Scholar
  83. 83.
    Dyson P J, McIndoe J S, Zhao D. Direct analysis of catalysts immobilized in ionic liquids using electrospray ionisation ion trap mass spectrometry. Chem Commun, 2003, 508–509Google Scholar
  84. 84.
    Yoshizawa M, Ogihara W, Ohno H. Novel polymer electrolytes prepared by copolymerization of ionic liquid monomers. Poly Adv Techn, 2002, 13(8): 589–594CrossRefGoogle Scholar
  85. 85.
    Ohno H, Yoshizawa M, Ogihara W. Development of new class of ion conductive polymers based on ionic liquids. Electrochim Acta, 2004, 50(2–3): 255–261CrossRefGoogle Scholar
  86. 86.
    Ogihara W, Yoshizawa M, Ohno H. Novel ionic liquids composed of only azole ions. Chem Lett, 2004, 33(8): 1022–1023CrossRefGoogle Scholar
  87. 87.
    Xue H, Gao Y, Twamley B, Shreeve J M. New energetic salts based on nitrogen-containing heterocycles. Chem Mater, 2005, 17(1): 191–198CrossRefGoogle Scholar
  88. 88.
    Katritzky K R, Singh S, Kirichenko K, Holbrey J D, Smiglak M, Reichert W M, Rogers R D. 1-butyl-3-methylimidazolium 3,5-dinitro-1,2,4-triazolate: A novel ionic liquid containing a rigid, planar energetic anion. Chem Commun, 2005, (7): 868–870Google Scholar
  89. 89.
    Zhou Z-B, Matsumoto H, Tatsumi K. Low-melting, low-viscous, hydrophobic ionic liquids: 1-alkyl(alkyl ether)-3-methylimidazolium perfluoroalkyltrifluoroborate. Chem Eur J, 2004, 10(24): 6581–6591CrossRefGoogle Scholar
  90. 90.
    Zhou Z-B, Matsumoto H, Tatsumi K. Low-melting, low-viscous, hydrophobic ionic liquids: Aliphatic quaternary ammonium salts with perfluoroalkyltrifluoroborates. Chem Eur J, 2005, 11(2): 752–766CrossRefGoogle Scholar
  91. 91.
    Kim H S, Kim Y, Lee H, Park K, Lee C, Chin C. Ionic liquids containing anionic selenium species: Applications for the oxidative carbonylation of aniline. Angew Chem Int Ed, 2002, 41(22): 4300–4303CrossRefGoogle Scholar
  92. 92.
    Zhao D, Fei Z, Ohlin C A, Laurenczy G, Dyson P J. Dualfunctionalized ionic liquids: Synthesis and characterization of imidazolium salts with a nitrile-functionalized anion. Chem Commun, 2004, 2500–2501Google Scholar
  93. 93.
    van den Broeke J, Winter F, Deelman B-J, van Koten G. A highly fluorous room-temperature ionic liquid exhibiting fluorous biphasic behavior and its use in catalyst recycling. Org Lett, 2002, 4(22): 3851–3854CrossRefGoogle Scholar
  94. 94.
    McGuinness D S, Saendig N, Yates B F, Cavell K J. Kinetic and density functional studies on alkyl-carbene elimination from Pd(II) heterocylic carbene complexes: A new type of reductive elimination with clear implications for catalysis. J Am Chem Soc, 2001, 123(17): 4029–4040CrossRefGoogle Scholar
  95. 95.
    McGuinness D S, Cavell K J, Yates B F, Skelton B W, White A H. Oxidative addition of the imidazolium cation to zerovalent Ni, Pd, and Pt: A combined density functional and experimental study. J Am Chem Soc, 2001, 123(34): 8317–8328CrossRefGoogle Scholar
  96. 96.
    Chaumont A, Wipff G. Solvation of uranyl(II) and europium(III) cations and their chloro complexes in a room-temperature ionic liquid. A theoretical study of the effect of solvent “Humidity”. Inorg Chem, 2004, 43(19): 5891–5901CrossRefGoogle Scholar
  97. 97.
    Gaillard C, El Azzi A, Billard I, Bolvin H, Hennig C. Uranyl complexation in fluorinated acids (HF, HBF4, HPF6, HTf2N): A combined experimental and theoretical study. Inorg Chem, 2005, 44(4): 852–861CrossRefGoogle Scholar
  98. 98.
    Katsyuba S A, Dyson P J, Vandyukova E E, Chernova A V, Vidis A. Molecular structure, vibrational spectra, and hydrogen bonding of the ionic liquid 1-ethyl-3-methyl-1H-imidazolium tetrafluoroborate. Helv Chim Acta, 2004, 87: 2556–2565CrossRefGoogle Scholar
  99. 99.
    Dyson P J, Ellis D J, Welton T, Parker D G. Arene hydrogenation in a room-temperature ionic liquid using a ruthenium cluster catalyst. Chem Commun, 1999, 25–26Google Scholar
  100. 100.
    Ellis D J, Dyson P J, Parker D G, Welton T. Hydrogenation of non-activated alkenes catalysed by water-soluble ruthenium carbonyl clusters using a biphasic protocol. J Mol Catal A: Chem, 1999, 150: 71–75CrossRefGoogle Scholar
  101. 101.
    Dyson P J, Ellis D J, Welton T. A temperature-controlled reversible ionic liquid-water two phase-single phase protocol for hydrogenation catalysis. Can J Chem, 2001, 79: 705–708CrossRefGoogle Scholar
  102. 102.
    Dyson P J, Kathryn R, Welton T. Electrospray mass spectrometry of [Ru46-C6H6)4(OH)4]4+: First direct evidence for the persistence of the cubane unit in solution and its role as a precatalyst in the hydrogenation of benzene. Inorg Chem Commun, 2001, 4: 571–573CrossRefGoogle Scholar
  103. 103.
    Boxwell C J, Dyson P J, Ellis D J, Welton T. A highly selective arene hydrogenation catalyst that operates in ionic liquid. J Am Chem Soc, 2002, 124: 9334–9335CrossRefGoogle Scholar
  104. 104.
    Dyson P J, Ellis D J, Henderson W, Laurenczy G. A comparison of ruthenium-catalysed arene hydrogenation reactions in water and 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids. Adv Syn & Catal, 2003, 345: 216–221CrossRefGoogle Scholar
  105. 105.
    Dyson P J, Laurenczy G, Ohlin C A, Vallance J, Welton T. Determination of hydrogen concentration in ionic liquids and the effect (or lack of) on rates of hydrogenation. Chem Commun, 2003, 2418–2419Google Scholar
  106. 106.
    Zhao D, Dyson P J, Laurenczy G, McIndoe J S. On the catalytic activity of cluster anions in styrene hydrogenation: Considerable enhancements in ionic liquids compared to molecular solvents. J Mol Catal A: Chem, 2004, 214: 19–25CrossRefGoogle Scholar
  107. 107.
    Ohlin C A, Dyson P J, Laurenczy G. Carbon monoxide solubility in ionic liquids: Determination, prediction and relevance to hydroformylation. Chem Commun, 2004, 1070–1071Google Scholar
  108. 108.
    Daguenet C, Scopelliti R, Dyson P J. Mechanistic investigations on the hydrogenation of alkenes using ruthenium(II)-arene diphosphine complexes. Organometallics, 2004, 23: 4849–4857CrossRefGoogle Scholar
  109. 109.
    Vidis A, Ohlin C A, Laurenczy G, Kuesters E, Sedelmeier G, Dyson P J. Rationalisation of solvent effects in the Diels-Alder reaction between cyclopentadiene and methyl acrylate in room temperature ionic liquids. Adv Syn & Catal, 2005, 347: 266–274CrossRefGoogle Scholar
  110. 110.
    Xiao J-C, Shreeve J M. Synthesis of 2,2′-biimidazolium-based ionic liquids: Use as a new reaction medium and ligand for palladium-catalyzed suzuki cross-coupling reactions. J Org Chem, 2005, 70(8): 3072–3078CrossRefGoogle Scholar
  111. 111.
    Zhao D, Fei Z, Geldbach T J, Scopelliti R, Dyson P J. Nitrile-functionalized pyridinium ionic liquids: Synthesis, characterization, and their application in carbon-carbon coupling reactions. J Am Chem Soc, 2004, 126: 15876–15882Google Scholar
  112. 112.
    Geldbach T J, Dyson P J. A versatile ruthenium precursor for biphasic catalysis and its application in ionic liquid biphasic transfer hydrogenation: Conventional vs task-specific catalysts. J Am Chem Soc, 2004, 126: 8114–8115CrossRefGoogle Scholar
  113. 113.
    Sasaki K, Matsumura S, Toshima K. A novel glycosidation of glycosyl fluoride using a designed ionic liquid and its effect on the stereoselectivity. Tetrahedron Lett, 2004, 45(38): 7043–7047CrossRefGoogle Scholar
  114. 114.
    Choong E S, Eun J R. Practical method to recycle a chiral (salen)Mn epoxidation catalyst by using an ionic liquid. Chem Commun, 2000, (10): 837–838Google Scholar
  115. 115.
    Kim K-W, Song B, Choi M-Y, Kim M-J. Biocatalysis in ionic liquids: Markedly enhanced enantioselectivity of lipase. Org Lett, 2001, 3(10): 1507–1509CrossRefGoogle Scholar
  116. 116.
    Choong E S, Da-un J, Eun J R, Sang-gi L, Dae Y C. Osmium tetroxide-(QN)2PHAL in an ionic liquid: A highly efficient and recyclable catalyst system for asymmetric dihydroxylation of olefins. Chem Commun, 2002, (24): 3038–3039Google Scholar
  117. 117.
    Guo H-M, Cun L-F, Gong L-Z, Mi A-Q, Jiang Y-Z. Asymmetric direct aldol reaction catalyzed by an L-prolinamide derivative: Considerable improvement of the catalytic efficiency in the ionic liquid. Chem Commun, 2005, (11): 1450–1452Google Scholar
  118. 118.
    Jodry J J, Mikami K. New chiral imidazolium ionic liquids: 3D-network of hydrogen bonding. Tetrahedron Lett, 2004, 45(23): 4429–4431CrossRefGoogle Scholar
  119. 119.
    Kim E J, Ko S Y, Dziadulewicz E K. Mitsunobu alkylation of imidazole. A convenient route to chiral ionic liquids. Tetrahedron Lett, 2005, 46(4): 631–633CrossRefGoogle Scholar
  120. 120.
    Pegot B, Vo-Thanh G, Gori D, Loupy A. First application of chiral ionic liquids in asymmetric Baylis-Hillman reaction. Tetrahedron Lett, 2004, 45(34): 6425–6428CrossRefGoogle Scholar
  121. 121.
    Ding J, Desikan V, Han X, Xiao T L, Ding R, Jenks W S, Armstrong D W. Use of chiral ionic liquids as solvents for the enantioselective photoisomerization of dibenzobicyclo[2.2.2] octatrienes. Org Lett, 2005, 7(2): 335–337CrossRefGoogle Scholar
  122. 122.
    Seebach D, Oei H A. Mechanism of electrochemical pinacolization. First asymmetric electrosynthesis in a chiral medium. Angew Chem, 1975, 87(17): 629–630Google Scholar
  123. 123.
    Di Furia F, Modena G, Curci R. Chiral solvent-induced asymmetric synthesis of sulfoxides in the metal-catalyzed oxidation of sulfides by tert-butyl hydroperoxide. Tetrahedron Lett, 1976, (50): 4637–4638Google Scholar
  124. 124.
    Laarhoven W H, Cuppen T J H M. Chiral solvent-induced asymmetric synthesis; photosynthesis of optically enriched hexahelicene. J Chem Soc Chem Commun, 1977, (2): 47–48Google Scholar
  125. 125.
    Laarhoven W H, Cuppen T J H M. Chiral solvent-induced asymmetric synthesis. Part 2. Photosynthesis of optically enriched hexahelicenes. J Chem Soc Perkin Trans 2: Phys Org Chem, 1978, (4): 315–318Google Scholar
  126. 126.
    Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers. Angew Chem Int Ed, 2004, 43(18): 2334–2375CrossRefGoogle Scholar
  127. 127.
    Adams C J, Bradley A E, Seddon K R. The synthesis of mesoporous materials using novel ionic liquid templates in water. Austr J Chem, 2001, 54(11): 679–681CrossRefGoogle Scholar
  128. 128.
    Jin K, Huang X, Pan L, Li J, Appel A, Wherland S, Pang L. Cu(I)(bpp)]BF4: The first extended coordination network prepared solvothermally in an ionic liquid solvent. Chem Commun, 2002, (23): 2872–2873Google Scholar
  129. 129.
    Cooper E R, Andrews C D, Wheatley P S, Webb P B, Wormald P, Morris R E. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature, 2004, 430(7003): 1012–1016CrossRefGoogle Scholar
  130. 130.
    Liao J-H, Wu P-C, Bai Y-H. Eutectic mixture of choline chloride/urea as a green solvent in synthesis of a coordination polymer: [Zn(O3PCH2CO2)]NH4. Inorg Chem Commun, 2005, 8(4): 390–392CrossRefGoogle Scholar
  131. 131.
    Fei Z, Zhao D, Geldbach T J, Scopelliti R, Dyson P J, Antonijevic S, Bodenhausen G. A synthetic zwitterionic water channel: Characterization in the solid state by X-ray crystallography and NMR spectroscopy. Angew Chem Int Ed, 2005, 44: 5720–5725CrossRefGoogle Scholar
  132. 132.
    Fei Z, Geldbach T J, Zhao D, Scopelliti R, Dyson P J. A nearly planar water sheet sandwiched between strontium-imidazolium carboxylate coordination polymers. Inorg Chem, 2005, 44: 5200–5202CrossRefGoogle Scholar
  133. 133.
    Mehnert C P, Cook R A, Dispenziere N C, Afeworki M. Supported ionic liquid catalysis—A new concept for homogeneous hydroformylation catalysis. J Am Chem Soc, 2002, 124(44): 12932–12933CrossRefGoogle Scholar
  134. 134.
    Lee B S, Chi Y S, Lee J K, Choi I S, Song C E, Namgoong S K, Lee S-G. Imidazolium ion-terminated self-assembled monolayers on Au: Effects of counteranions on surface wettability. J Am Chem Soc, 2004, 126(2): 480–481CrossRefGoogle Scholar
  135. 135.
    Chi Y S, Lee J K, Lee S, Choi I S. Control of wettability by anion exchange on Si/SiO2 surfaces. Langmuir, 2004, 20(8): 3024–3027Google Scholar
  136. 136.
    Ye C, Liu W, Chen Y, Yu L. Room-temperature ionic liquids: A novel versatile lubricant. Chem Commun, 2001, (21): 2244–2245Google Scholar
  137. 137.
    Liu W, Ye C, Gong Q, Wang H, Wang P. Tribological performance of room-temperature ionic liquids as lubricant. Tribology Lett, 2002, 13(2): 81–85CrossRefGoogle Scholar
  138. 138.
    Mu Z, Liu W, Zhang S, Zhou F. Functional room-temperature ionic liquids as lubricants for an aluminum-on-steel system. Chem Lett, 2004, 33(5): 524–525CrossRefGoogle Scholar
  139. 139.
    Deshmukh R R, Rajagopal R, Srinivasan K V. Ultrasound promoted C-C bond formation: Heck reaction at ambient conditions in room temperature ionic liquids. Chem Commun, 2001, (17): 1544–1545Google Scholar
  140. 140.
    Dupont J, Fonseca G S, Umpierre A P, Fichtner P F P, Teixeira S R. Transition-metal nanoparticles in imidazolium ionic liquids: Recycable catalysts for biphasic hydrogenation reactions. J Am Chem Soc, 2002, 124(16): 4228–4229CrossRefGoogle Scholar
  141. 141.
    Scheeren C W, Machado G, Dupont J, Fichtner P F P, Texeira S R. Nanoscale Pt(0) particles prepared in imidazolium room temperature ionic liquids: Synthesis from an organometallic precursor, characterization, and catalytic properties in hydrogenation reactions. Inorg Chem, 2003, 42(15): 4738–4742Google Scholar
  142. 142.
    Zhao Y, Gao Y, Zhan D, Liu H, Zhao Q, Kou Y, Shao Y, Li M, Zhuang Q, Zhu Z. Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta, 2005, 66(1): 51–57CrossRefGoogle Scholar
  143. 143.
    Boennemann H, Brinkmann R, Kinge S, Ely T O, Armand M. Chloride free Pt-and PtRu-nanoparticles stabilised by “Armands’s ligand” as precursors for fuel cell catalysts. Fuel Cells, 2004, 4(4): 289–296CrossRefGoogle Scholar
  144. 144.
    Huang J, Jiang T, Gao H, Han B, Liu Z, Wu W, Chang Y, Zhao G. Pd nanoparticles immobilized on molecular sieves by ionic liquids: Heterogeneous catalysts for solvent-free hydrogenation. Angew Chem Int Ed, 2004, 43(11): 1397–1399CrossRefGoogle Scholar
  145. 145.
    Templeton AC, Wuelfing W P, Murray R W. Monolayer-protected cluster molecules. Acc Chem Res, 2000, 33(1): 27–36CrossRefGoogle Scholar
  146. 146.
    Cliffel D E, Zamborini F P, Gross S M, Murray R W. Mercaptoammonium-monolayer-protected, water-soluble gold, silver, and palladium clusters. Langmuir, 2000, 16(25): 9699–9702CrossRefGoogle Scholar
  147. 147.
    Yonezawa T, Imamura K, Kimizuka N. Direct preparation and size control of palladium nanoparticle hydrosols by water-soluble isocyanide ligands. Langmuir, 2001, 17(16): 4701–4703CrossRefGoogle Scholar
  148. 148.
    Brust M, Kiely C J. Some recent advances in nanostructure preparation from gold and silver particles: A short topical review. Coll and Surf A: Physicochem Engin Asp, 2002, 202(2–3): 175–186CrossRefGoogle Scholar
  149. 149.
    Kim K-S, Demberelnyamba D, Lee H. Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids. Langmuir, 2004, 20(3): 556–560CrossRefGoogle Scholar
  150. 150.
    Mu X-D, Evans D G, Kou Y. A general method for preparation of PVP-stabilized noble metal nanoparticles in room temperature ionic liquids. Catal Lett, 2004, 97(3–4): 151–154CrossRefGoogle Scholar
  151. 151.
    Mu X-D, Meng J-Q, Li Z-C, Kou Y. Rhodium nanoparticles stabilized by ionic copolymers in ionic liquids: Long lifetime nanocluster catalysts for benzene hydrogenation. J Am Chem Soc, 2005, 127(27): 9694–9695CrossRefGoogle Scholar
  152. 152.
    Stamenkovic V, Markovic N M, Ross P N. Structure-relationships in electrocatalysis: Oxygen reduction and hydrogen oxidation reactions on Pt(111) and Pt(100) in solutions containing chloride ions. J Electroanal Chem, 2001, 500(1–2): 44–51CrossRefGoogle Scholar
  153. 153.
    Schmidt T J, Paulus U A, Gasteiger H A, Behm R J, The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions. J Electroanal Chem, 2001, 508(1–2): 41–47CrossRefGoogle Scholar
  154. 154.
    Parkinson G. Reviving up for alkylation. Chem Engin, 2001, 108(1): 27–33Google Scholar
  155. 155.
    Boesmann A, Datsevich L, Jess A, Lauter A, Schmitz C, Wasserscheid P. Deep desulfurization of diesel fuel by extraction with ionic liquids. Chem Commun, 2001, (23): 2494–2495Google Scholar
  156. 156.
    Eber J, Wasserscheid P, Jess A. Deep desulfurization of oil refinery streams by extraction with ionic liquids. Green Chem, 2004, 6(7): 316–322CrossRefGoogle Scholar
  157. 157.
    Zhang S, Zhang Q, Zhang Z C. Extractive desulfurization and denitrogenation of fuels using ionic liquids. Ind & Engin Chem Res, 2004, 43(2): 614–622CrossRefGoogle Scholar
  158. 158.
    Lo W-H, Yang H-Y, Wie G-T. One-pot desulfurization of light oils by chemical oxidation and solvent extraction with room temperature ionic liquids. Green Chem, 2003, 5(5): 639–642CrossRefGoogle Scholar
  159. 159.
    Huang C, Chen B, Zhang J, Liu Z, Li Y. Desulfurization of gasoline by extraction with new ionic liquids. Energy & Fuels, 2004, 18(6): 1862–1864CrossRefGoogle Scholar
  160. 160.
    Wu W, Han B, Gao H, Liu Z, Jiang T, Huang J. Desulfurization of flue gas: SO2 absorption by an ionic liquid. Angew Chem Int Ed, 2004, 43(18): 2415–2417CrossRefGoogle Scholar

Copyright information

© Science in China Press 2006

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Guangdong Provincial Laboratory of Green Chemical TechnologySouth China University of TechnologyGuangzhouChina
  2. 2.Lausanne, EPFLSwiss Federal Institute of TechnologyLausanneSwitzerland
  3. 3.PKU Green Chemistry Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations