Science China Mathematics

, Volume 62, Issue 11, pp 2131–2154 | Cite as

Nevanlinna theory through the Brownian motion

  • Xianjing Dong
  • Yan He
  • Min RuEmail author


In this paper, we introduce the Nevanlinna theory using stochastic calculus, following the works of Davis (1975), Carne (1986) and Atsuji (1995, 2005, 2008 and 2017), etc. In particular, we give (another) proofs of the classical result of Nevanlinna for meromorphic functions and the result of Cartan-Ahlfors for holomorphic curves by using the probabilistic method.


Nevanlinna theory holomorphic curves second main theorem Brownian motion 


32H30 58J65 



The third author was supported by Simon Foundation of USA (Grant No. 531604).


  1. 1.
    Atsuji A. Nevanlinna theory via stochastic calculus. J funct anal, 1995, 132: 473–510MathSciNetCrossRefGoogle Scholar
  2. 2.
    Atsuji A. Brownian motion and value distribution theory of holomorphic maps and harmonic maps. Amer Math Soc Transl Ser 2, 2005, 215: 109–123MathSciNetzbMATHGoogle Scholar
  3. 3.
    Atsuji A. A second main theorem of Nevanlinna theory for meromorphic functions on complete Kähler manifolds. J Math Soc Japan, 2008, 2: 471–493CrossRefGoogle Scholar
  4. 4.
    Atsuji A. Value distribution of leaf wise holomorphic maps on complex laminations by hyperbolic Riemann surfaces. J Math Soc Japan, 2017, 2: 477–501CrossRefGoogle Scholar
  5. 5.
    Bass R F. Probabilistic Techniques in Analysis. New York: Springer, 1995zbMATHGoogle Scholar
  6. 6.
    Carne T K. Brownian motion and Nevanlinna theory. Proc Lond Math Soc (3), 1986, 52: 349–348MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chung K L. Lectures from Markov Process to Brownian Motion. New York: Springer-Verlag, 1982CrossRefGoogle Scholar
  8. 8.
    Davis B. Picard’s theorem and Brownian motion. Trans Amer Math Soc, 1975, 213: 353–361MathSciNetzbMATHGoogle Scholar
  9. 9.
    Fujimoto H. Value Distribution Theory of the Gauss Map of Minimal Surfaces in ℝm. Aspects of Mathematics, vol. 21. Wiesbaden: Vieweg, 1993Google Scholar
  10. 10.
    Ito K, McKean Jr H P. Diffusion Process and Their Sample Paths. New York: Academic Press, 1965zbMATHGoogle Scholar
  11. 11.
    Le Gall J F. Brownian Motion, Martingales, and Stochastic Calculus. Graduate Texts in Mathematics, vol. 274. New York: Springer, 2013Google Scholar
  12. 12.
    Revuz D D, Yor M. Continuous Martingales and Brownian Motion. Berlin: Springer, 1991CrossRefGoogle Scholar
  13. 13.
    Ru M. Nevanlinna Theory and Its Relation to Diophantine Approximation. Singapore: World Scientific, 2001CrossRefGoogle Scholar
  14. 14.
    Ru M. The recent progress in Nevanlinna theory. J Jiangxi Norm Univ Nat Sci Ed, 2018, 42: 1–11zbMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsNanjing UniversityNanjingChina
  2. 2.Department of MathematicsUniversity of HoustonHoustonUSA

Personalised recommendations