Behaviour of the Stokes operators under domain perturbation

  • Sylvie MonniauxEmail author


Depending on the geometry of the domain, one can define—at least—three different Stokes operators with Dirichlet boundary conditions. We describe how the resolvents of these Stokes operators converge with respect to a converging sequence of domains.


domain perturbation Stokes operator Dirichlet boundary conditions 


35J15 35Q30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the ANR Project INFAMIE (Grant No. ANR-15-CE40-001). The understanding of this subject has benefited from discussions with Tom ter Elst. The author thanks the anonymous referees whose remarks greatly improved this manuscript.


  1. 1.
    Arendt W. Approximation of degenerate semigroups. Taiwanese J Math, 2001, 5: 279–295MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arendt W, Daners D. Varying domains: Stability of the Dirichlet and the Poisson problem. Discrete Contin Dyn Syst, 2008, 21: 21–39MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Daners D. Dirichlet problems on varying domains. J Differential Equations, 2003, 188: 591–624MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    de Rham G. Differentiable Manifolds. Grundlehren der Mathematischen Wissenschaften, vol. 266. Berlin: Springer-Verlag, 1984Google Scholar
  5. 5.
    Heywood J G. On uniqueness questions in the theory of viscous flow. Acta Math, 1976, 136: 61–102MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kato T. Perturbation Theory for Linear Operators. Classics in Mathematics. Berlin: Springer-Verlag, 1995Google Scholar
  7. 7.
    Ladyzhenskaya O A, Solonnikov V A. Some problems of vector analysis, and generalized formulations of boundary-value problems for the Navier-Stokes equation. J Math Sci, 1978, 10: 257–286CrossRefzbMATHGoogle Scholar
  8. 8.
    Monniaux S. Navier-Stokes equations in arbitrary domains: The Fujita-Kato scheme. Math Res Lett, 2006, 13: 455–461MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Sohr H. The Navier-Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts. Basel: Birkhauser Verlag, 2001Google Scholar
  10. 10.
    Stummel F. Perturbation theory for Sobolev spaces. Proc Roy Soc Edinburgh Sect A, 1975, 73: 5–49MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Temam R. Navier-Stokes Equations: Theory and Numerical Analysis. Studies in Mathematics and Its Applications, vol. 2. Amsterdam-New York: North-Holland, 1979Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Aix Marseille UniversitéCNRSMarseilleFrance

Personalised recommendations