Advertisement

Science China Mathematics

, Volume 62, Issue 11, pp 2073–2088 | Cite as

Some new estimates for the complex Monge-Ampère equation

  • Xiuxiong ChenEmail author
  • Jingrui Cheng
Articles
  • 28 Downloads

Abstract

In this paper, we consider the complex Monge-Ampère equation posed on a compact Kahler manifold. We show how to get Lp (p < ∞) and L estimates for the gradient of the solution in terms of the continuity of the right-hand side.

Keywords

complex Monge-Ampère equations gradient estimates Kähler manifold 

MSC(2010)

35R01 32W20 

Notes

Acknowledgements

This work was supported by National Science Foundation of USA (Grant No. DMS-1914719).

References

  1. 1.
    Blocki Z. A gradient estimate in the Calabi-Yau theorem. Math Ann, 2009, 344: 317–327MathSciNetCrossRefGoogle Scholar
  2. 2.
    Caffarelli L A. Interior W 2, p estimates for solutions of the Monge-Ampère equation. Ann of Math (2), 1990, 131: 135–150MathSciNetCrossRefGoogle Scholar
  3. 3.
    Caffarelli L A. Some regularity properties of solutions of Monge-Ampère equation. Comm Pure Appl Math, 1991, 44: 965–969MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen X X, Cheng J. On the constant scalar curvarure Kähler metrics(I): Apriori estimates. ArXiv:1712.06697, 2017Google Scholar
  5. 5.
    Chen X X, He W. The complex Monge-Ampère equation on compact Kähler manifolds. Math Ann, 2012, 354: 1583–1600MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen X X, Wang Y-Q. C 2, a estimate for Monge-Ampère equations with Hölder continuius right hand side. Ann Global Anal Geom, 2016, 49: 195–204MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dinew S, Zhang X, Zhang X-W. The C 2, α estimate of complex Monge-Ampère equation. Indiana Univ Math J, 2011, 60: 1713–1722MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Classics in Mathematics, vol. 224. Berlin: Springer-Verlag, 1997zbMATHGoogle Scholar
  9. 9.
    Guedj V, Zeriahi A. The weighted Monge-Ampère energy of quasiplurisubharmonic functions. J Funct Anal, 2007, 250: 442–482MathSciNetCrossRefGoogle Scholar
  10. 10.
    He W Y. On the regularity of the complex Monge-Ampère equations. Proc Amer Math Soc, 2012, 140: 1719–1727MathSciNetCrossRefGoogle Scholar
  11. 11.
    Li C, Li J-Y, Zhang X. A C 2, α-estimate of the complex Monge-Ampère equation. J Funct Anal, 2018, 275: 149–169MathSciNetCrossRefGoogle Scholar
  12. 12.
    Tian G. On Kähler-Einstein metrics on certain Kähler manifolds with c 1(M) &gt; 0. Invent Math, 1987, 89: 225–246MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wang Y. A remark on C 2, α-regularity of the complex Monge-Ampère equation. ArXiv:1111.0902, 2011Google Scholar
  14. 14.
    Yau S-T. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I*. Comm Pure Appl Math, 1978, 31: 339–441MathSciNetCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsSUNY Stony BrookStony BrookUSA
  2. 2.Simons Center for Geometry and PhysicsSUNY Stony BrookStony BrookUSA

Personalised recommendations