Science China Mathematics

, Volume 62, Issue 11, pp 2211–2228 | Cite as

Metric distortion in the geometric Schottky problem

  • Lizhen JiEmail author


The classical Schottky problem is concerned with characterization of Jacobian varieties of compact Riemann surfaces among all abelian varieties, or the identification of the Jacobian locus \(J(\mathcal{M}_g)\) in the moduli space \(\mathcal{A}_g\) of principally polarized abelian varieties as an algebraic subvariety. By viewing \(\mathcal{A}_g\) as a noncompact metric space coming from its structure as a locally symmetric space and \(J(\mathcal{M}_g)\) as a metric subspace, we compare the subspace metric d and the induced length metric ℓ on \(J(\mathcal{M}_g)\). Consequently, we clarify the nature of the metric distortion of the subspace \(J(\mathcal{M}_g)\) and hence settle a problem posed by Farb (2006) on the metric distortion of \(J(\mathcal{M}_g)\) inside \(\mathcal{A}_g\) in a certain sense (see Theorem 1.5 and Corollary 1.6).


metric distortion Schottky problem noncompact metric space 


14H42 14H10 14K10 



This work was supported by the Simons Foundation (Grant No. 353785). The author thanks an anonymous referee for his careful reading of this paper and his constructive suggestions.


  1. 1.
    Baily W. Satake’s compactification of V n. Amer J Math, 1958, 80: 348–364MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baily W. On the moduli of Jacobian varieties. Ann of Math (2), 1960, 71: 303–314MathSciNetCrossRefGoogle Scholar
  3. 3.
    Buser P, Sarnak P. On the period matrix of a Riemann surface of large genus. Invent Math, 1994, 117: 27–56MathSciNetCrossRefGoogle Scholar
  4. 4.
    Donagi R. The Schottky problem. In: Theory of Moduli. Lecture Notes in Mathematics, vol. 1337. Berlin: Springer, 1988, 84–137MathSciNetCrossRefGoogle Scholar
  5. 5.
    Drutu C, Kapovich M. Geometric Group Theory. With An Appendix by Bogdan Nica. American Mathematical Society Colloquium Publications, 63. Providence: Amer Math Soc, 2018zbMATHGoogle Scholar
  6. 6.
    Farb B. Some problems on mapping class groups and moduli space. In: Problems on Mapping Class Groups and Related Topics. Proceedings of Symposia in Pure Mathematics, vol. 74. Providence: Amer Math Soc, 2006, 11–55MathSciNetCrossRefGoogle Scholar
  7. 7.
    Farb B, Masur H. Teichmüller geometry of moduli space, II.M(S) seen from far away. In: Contemporary Mathematics, vol. 510. Providence: Amer Math Soc, 2010, 71–79CrossRefGoogle Scholar
  8. 8.
    Farkas H, Rauch H. Two kinds of theta constants and period relations on a Riemann surface. Proc Natl Acad Sci USA, 1969, 62: 679–686MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fay J. Theta Functions on Riemann Surfaces. Lecture Notes in Mathematics, vol. 352. Berlin-New York: Springer-Verlag, 1973CrossRefGoogle Scholar
  10. 10.
    Griffths P, Harris J. Principles of Algebraic Geometry. New York: John Wiley & Sons, 1978Google Scholar
  11. 11.
    Gromov M. Asymptotic invariants of infinite groups. In: Geometric Group Theory, vol. 2. London Mathematical Society Lecture Note Series, vol. 182. Cambridge: Cambridge University Press, 1993, 1–295MathSciNetGoogle Scholar
  12. 12.
    Gromov M. Metric Structures for Riemannian and Non-Riemannian Spaces. Progress in Mathematics, vol. 152. Boston: Birkhäuser, 1999Google Scholar
  13. 13.
    Grushevsky S. The Schottky problem. In: Current Developments in Algebraic Geometry. Mathematical Sciences Research Institute Publications, vol. 59. Cambridge: Cambridge University Press, 2012, 129–164Google Scholar
  14. 14.
    Hattori T. Asymptotic geometry of arithmetic quotients of symmetric spaces. Math Z, 1996, 222: 247–27715MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ji L. The story of Riemann’s moduli space. ICCM Not, 2015, 3: 46–73MathSciNetGoogle Scholar
  16. 16.
    Ji L. Metric Schottky problem and Satake compactifications of moduli spaces. In: Proceedings of the 7th International Congress of Chinese Mathematicians. Beijing-Boston: Higher Education Press-International Press, 2016, 267–302Google Scholar
  17. 17.
    Ji L, Leuzinger E. The asymptotic Schottky problem. Geom Funct Anal, 2010, 19: 1693–1712MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ji L, MacPherson R. Geometry of compactifications of locally symmetric spaces. Ann Inst Fourier (Grenoble), 2002, 52: 457–559MathSciNetCrossRefGoogle Scholar
  19. 19.
    Krichever I, Shiota T. Soliton equations and the Riemann-Schottky problem. In: Handbook of Moduli, vol. II. Advanced Lectures in Mathematics (ALM), vol. 25. Somerville: International Press, 2013, 205–258MathSciNetzbMATHGoogle Scholar
  20. 20.
    Leuzinger E. Tits geometry, arithmetic groups, and the proof of a conjecture of Siegel. J Lie Theory, 2004, 14: 317–338MathSciNetzbMATHGoogle Scholar
  21. 21.
    Leuzinger E. Reduction theory for mapping class groups and applications to moduli spaces. J Reine Angew Math, 2010, 649: 11–31MathSciNetzbMATHGoogle Scholar
  22. 22.
    Lewittes J. Riemann surfaces and the theta function. Acta Math, 1964, 111: 37–61MathSciNetCrossRefGoogle Scholar
  23. 23.
    Moonen B, Oort F. The Torelli locus and special subvarieties. In: Handbook of Moduli, vol. II. Advanced Lectures in Mathematics (ALM), vol. 25. Somerville: International Press, 2013, 549–594MathSciNetzbMATHGoogle Scholar
  24. 24.
    Riemann B. Collected Papers. Translated from the 1892 German edition by Roger Baker, Charles Christenson and Henry Orde. Heber City: Kendrick Press, 2004zbMATHGoogle Scholar
  25. 25.
    Schottky F. Ueber specielle Abelsche Functionen vierten Ranges. J Reine Angew Math, 1888, 103: 185–203MathSciNetzbMATHGoogle Scholar
  26. 26.
    Schottky F. Über die Moduln der Thetafunctionen. Acta Math, 1903, 27: 235–288MathSciNetCrossRefGoogle Scholar
  27. 27.
    Shiota T. Characterization of Jacobian varieties in terms of soliton equations. Invent Math, 1986, 83: 333–382MathSciNetCrossRefGoogle Scholar
  28. 28.
    Teichmüller O. Veränderliche Riemannsche Flächen. Deutsche Math, 1944, 7: 344–359. An English translation in “Variable Riemann surfaces.” Translated from the German by Annette-A’Campo-Neuen. IRMA Lect Math Theor Phys, vol. 19. Handbook of Teichmüller Theory, vol. IV. Zürich: Eur Math Soc, 2014, 787-803MathSciNetzbMATHGoogle Scholar
  29. 29.
    Wolpert S. The hyperbolic metric and the geometry of the universal curve. J Differential Geom, 1990, 31: 417–472MathSciNetCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations